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ABSTRACT OF THE DISSERTATION
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Shift Keying Communication Systems In High Frequency
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v

A certain type of M-ary Frequency Shift Keying [MFSK] communica-
tion systems, which use Frequency Hopping [FH] to combat jamming is

studied in this work. In particular, the performance of such systems

over High Frequency [HF] sky-wave channels, when subjected to inten-
tional jamming, is the main topic of this study. The channels conside-

red are characterized by Rayleigh fading and additive Gaussian noise.

To combat jamming the communication system hops over the total spread
spectrum bandwidth, which is many times larger than the *instantaneous®
bandwidth occupied by the MFSK signal.- - Located within the HF band and
using sky-wave as the dominant propagation mode, the spread spectrum
bandwidth is typically nonuniform, time dependent, and congested by many i
other users of the electromagnetic spectrum. In such an environment,

Frequency Hopping [FH] MFSK systems seem to be more practical than

Direct Sequence‘ spectrum spreading techniques. A FH/MFSK system can
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friendly signals that should not be interfered with., .. |

be easily programmed to use a noncontiguous band, thereby avoiding

strong interfering signals (which are usually narrow-band signals) or

To make the best possible use of the available bandwidth, the
HF/MFSK system requires channel related information and information re-
lated to the jammer. The receiver may probe the slowly varying parame-
ters of the channel and jammer signal, and based upon this information,
possibly supplemented by apriory knowledge of the jamming equipment,
establish an "optimal hopping strategy". On a short term basis, the
receiver may detect when a particular transmitted symbol is jammed or
not, and use this information in the decoding process. In this work we
study and compare the performance of anti-jam communication systems
using this kind of information to that of similar systems that do not

use such information.

Since coding and/or diversity is usually crucial in a fading
environment, this study deals primarily with coded systems. A ganeral
upper-bound on the coded-bit error probability is used as a basis for
evaluating the performance of all anti-jam communication systems consi-
dered. This bound, which can be expressed as a function of the sys-
tem's cutoff rate Ro’ is independent of the specific coding employed,
and therefore serves to decouple the coding aspects of the system from
the remaining part of the communication system. It thus facilitates
system analysis by allowing seperate treatment of each problem. This
bound is used for optimizing various parameters of the systems under
study. To compare alternative anti-jam systems, two common jamming

techniques namely, noise jamming and multi-tone jamming, were selected

xii
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and the options open before the communication system and the jammer

defined.

A1l the receivers that we consider in this study are conventional

FH/MFSK noncoherent orthogonal receivers, a choice which seems justified

by the robustness of noncoherent receivers compared tc coherent systems.

The receivers differ, though, by the type of processing conducted on the

energy detector outputs, by the metrics used, and by the amount of auxi-
liary information related to jammer activity, which is available to
them. In particular, we study the performance of Hard Decision recei-
vers, Limiter and Quantizer-Limiter receivers. For each system we
derive the corresponding upper bound as a function of p, where p is
either the duty cycle of a pulsed jammer, or the fraction of the total
spread spectrum bandwidth which is being jammed. We then find the value
of p which maximizes the bound and finally compa%e the performahce of
the systems under study using the "worst case p" for each system. It is
shown that the "worst case p" depends on the receiver being used by the
"target communication system". For two specific cases we explicitly

show its dependence on certain receiver parameters.
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CHAPTER 1
INTRODUCTION

1.1 The High Frequency Band

Throughout the most part of the wireless communication short
history the High Frequency [HF] band namely, 3-30 MHz was the first
1ine medium for long distance communication. Only recently have exten-
sive development and construction of satellite Communication Systems
{CS] overshadowed the crucial contribution of this medium to modern
society. The HF band is no longer unique in some of its most important
capabilities and yet it seems that it is not going to lose its dominant
role in many civilian and military fields of activity. Moreover, re-
search and technological achievements pertinent to HF communication
technology promise enhanced use of this frequency band for reliable
around the clock communication over large distances.

The HF band is relatively a complex communication medium. Some of
the features characterising this medium are :

° Several'propagation modes, notably ground-wave and sky-wave
involving possibly several atmospheric reflecting layers giving
rise to multipath propagation problems. |

° The channel characteristics are usually time dependent.

° Generally, the channel has highly nonuniform spectral characteri-

stics.

° The signals transmitted through a sky-wave path are subject to




D S U AT Y

fading and can in most cases be adequately described as having
Rayleigh distributed envelope.

° The HF band is typically congested by high power transmitters and
other types of man made emitters and is only loosly controlled by

international regulatory authorities.

High frequency CS can easily be interfered with, since the
interfering transmitter does not have to be in the vicinity of the
receiving site, in order to cause effective interference. It is there-
fore generally accepted that Anti-Jam [AJ] capabilities are particula-
rly important at the HF band. The existing interest in AJ capabilities
of HF communication systems is further supported by the fact that long
range HF links frequently serve as back-up systems to satellite relays,

which are highly vulnerable to intelligent jamming.

1.2 Anti-Jam Capability

The basic key to combatting intentional jamming can be stated as
follows :

"Choose signal coordinates such that the jammer cannot achieve

large jammer to signal power ratio in these coordinates”.
If there are many signal coordinates available and only a small subset
of them, not known to the jammer, is beeing used at any given time,
then, the jammer is forced to jam all coordinates with 1ittle power in
each or jam only few coordinates and leave the rest free. The signal

coordinates to be used at any given instant are selected by a pseudo

random [PN] sequence, known to the transmitter and intended receiver,
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but not to the jammer.
Clearly, the more signal coordinates are available,- the better
the protection against jamming can be. Confined to a bandwidth W and

duration T there are :

2WT coherent orthogonal waveforms

WT noncoherent orthogonal waveforms

For given W and T there are many possible ways to choose a set of coor-
dinates, but must commonly it is done by one of the fo1lowihg two basic
methods [ 10, 11] :

a. Direct Sequence spreading [DS]

b. Frequency Hopping [FH)
Hence the term "spread Spectrum" signals. Many hybrids of these two
spreading techniqﬁes have also been devised, but their performance as
an AJ protection tool, does not significantly differ from the basic
ones.

The DS method is usually favored at high frequency bands (VHF
and up) where wide bandwidths and 1ine of sight propagation generally
result in less spectrum crowding. At the HF band, however, it is diff-
jcult to maintain signal coherence over wide bandwidths, particularly
when the dominant propagation mode is sky-wave. Several techniques
have been proposed, which potentially can solve this problem, but some
degradation in performance and considerable additional complexity is
unavoidable. Moreover, a large number of conventional (narrow-band)
signals may (and typically do) occupy the same band and interfere with
the reception of the broad-band signal. In contrast, frequency Hopping

system can use channels with relatively narrow coherence bandwidths.
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They also have the following "practical” advantages:

2 ° easier synchronization.

° wider spread bandwidths.

° do not require a contiguous band.

° are more compatible with other users of the same frequency

band which usually transmit narrow band signalis.

FH is therefore the most commonly used AJ techniques in the HF band.

1.3 AJd Desigg}and Channel Probinq‘

In a Rayleigh fading environment the error probability of an
uncoded CS s roughly inversely proportional to the mean signal to
noise ratio [SNR]. This is in sharp contrast to non-fading channels, in
which the error probability decays exponentially when the SNR s

‘f‘- increased. Consequently, even when no intentional jamming exists, it

is extremely difficult and expensive to achieve a low error probability,

{ say 10'6, over a fading channel. When jamming exists the channel may
. be totally useless for the intended operation unless some form of co-
ding is implemented (MFSK, M > 2 and diversity are in fact a simole
form of coding). Therefore, this investigation is primarily concerned

with overall performance of coded CSs under jamming.

ety
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It is widely recognized that modulation, receiver structure and
coding techniques, that are well designed for an unjammed environment,
do not Tecessarily perform well under jamming. Basic characteristics
like signal wave-forms, demodulation techniques, coding, interleaving
schemes etc., may be profoundly effected when requirements for anti-jam 3

capability are introducad. Hence, the topic of AJ capability should

.
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‘1? be considered in the design phase, rather than serve as one criterion of
{ merit when comparing fixed parameter designs.

An efficient jamming operation usually requires measurements and :
_ analysis of various parameters of the target signal and the channel.
Based ob these measurements the optimal jamming strategy is determined.
The jammer then monitors the target under jamming to assess its response
if any, to his efforts. Likewise, it is intuitively clear that an
improved AJ perfonnanée can be achieved by continuous probing / measur-
ing the channel and jammer emission. This is the case in particular for
HF sky-wave channels which are highly nonuniform, complex, time-varying
and heavily congested by "innocent" users. There are many topics related
to channel and jammer probing that should be considered. These include
the following :

° What data should be collected?
® How should it be measured?
. ® How reliable are these measurements?
{ ° How should the data be exploited?
In this study we analyse and compare the performance of several receiver

& ,\ structures which make use of "channel and jammer state knowledge" with

that of receivers that do not use such information. For situations in

% which jammers state information is not available, we introduce and study ‘
several different receiver structures intended to reduce the resulting
degredation in performance. Throughout this study we assume that the

; receiver has "channel state information". For such cases we introduce

optimal hopping strategy which takes advantage of the available data.
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1.4 Outline of the Dissertation

In Chapter II we introduce all the main topics discussed in this
dissertation. In particular, we introduce the channel model, define
the "Slotted Channel”, and discuss the concepts of CSI and JSI. The
jamming modes studied in this work and the options open to the jammer
are defined, as well as some basic assumptions related to the informa-.
tion that the jammer and the CS's operator have with respect to the
capabilities of the other. These assumptions serve to define the "rules

of the game". We then proceed to describe the various receiver struc-

tures to be studied and compared. The basic transmitter / receiver
common to all systems studied in this work is presented. In section 5.2

we introduce additional definitions required in the seauel.

‘ In chapter III we aescribe the basic analysis technique used
throughout this work. We present the Chernoff bound for a general met-
ric and show that when the ML metric is used, the Bhattacharyya bound

{ results. The general bound parameter D and the cutoff rate R° are

defined and R° is derived for the special case of M-ary symmetric

channel.
The performance of six different MFSK receivers over a neali-

I gible background noise uniform channel is analyzed in chaoter IV.

For each receiver we derive the bound parameter D and the worst case
duty cycle p. Ro is computed under the worst jamming conditions for

M=2,4,8,16,32. These results are shown in fiaures 9a - %e.

AEh e A

In chapter V we analyze the performance of four receivers

operating over a nonuniform channel. For the Soft Decision receiver the

N
[ LT —



optimal metric weighing is derived and for all receivers the correspon-

ding error bounds and the worst p is established.

In chapter VI we present several simple applications of the
results derived in previous chapters. Using the union bound we derive
simple bounds on the symbol and bit error ptobabilities Ps’ and Pb of
MFSK and m diversity MFSK. In order to show a typical applicatior
of the bound paramefer D, we also introduce an m diversity orthogonal
convolutional code and a numerical example. Several figures contained
in this chapter compare the exact bit error probability to the corres-

ponding bounds for several special cases.

The "Optimum Hopping Strategy" for the noise jamming case is
derived in chapter VII. It is followed by a proof that the minimax
solution, as derived for an uncoded system, is valid also for coded CS

using Soft or Hard Decision receiver.

Chapter VIII deals with multi-tone jamming. It contains a
general introduction to the subject, and a performance analysis of two
receiver types under multi-tone jamming. Section 8.3 presents simple
applications of results derived in chpater VIII. 1In section 8.4 we
derive the "Optimal Hopping Streategy" for the multi-tone jamming case
which yields results similar to those obtained in chapter VII for the

noise jamming. Chapter IX contains some concluding remarks.

For easy reference two appendices were included. Appendix I

contains the derivation of the symbo) error probability of a noncohe-

rent MFSK receiver in Rayleigh fading channel. Appendix Il contains




the derivation of the symbol error probability of a noncoherent BFSK

receiver in Rayleigh fading channel when hit by a multi-tone jam.




CHAPTER il

THE ANTI-JAM COMMUNICATION SYSTEM : 1

2.1 Channel Characteristic a;d Probing

In this study we concentrate on the following problem: A certain

segment of the Hfgh Frequency [uF] band (3-30 MHz) of bandwidth W

supports an MFSK anti-jam [AJ] communication system. The signals trans-
mitted are subject to Rayleigh fading and additive white Gaussian

noise [AWGN]. The receiver is a noncoherent detection receiver, which

uses Frequency Hopping [FH] to combat jamming.

E Typically, a wide band HF channel (say, W21 MHz) is highly non-

uniform. _In this study we consider several channel models charactgrized

by the following parameters:

7 * Average received signal power distribution across the bandwidth

| ! W.

. * Jammer propagation loss distribution across the bandwidth W,

* Noise power and interfering signals distribution across the
bandwidth W.

We divide the bandwidth W into L fixed sub-bands each of which

occupies a bandwidth of roughly M/Tc, where T. is the "chip" duration.

1
f:? : supports one sub-channel. Each sub-band contains M tone positions and
i
1 Hence :

(2.1)




where W is the total spread spectrum bandwidth. We assume that the
fading is slow compared to TC and uniform f We also assume that each
sub-channel fades independently and Ehat each chip is independently
hopped among many M tone sub-channels,and therefore, that any sequence
of MFSK chips experiences independent fading and jamming noise in each
chip.

As stated above, an improved AJ performance can be achieved by

continuously probing/measuring the channel and the jammer emission.

These measurements could be classified to long term and short.term
observations. Long term observations will be counted upon to supply the
information related to background noise level and average signal power

across the band, interfering signals, jammer power etc. We also consi-

der two kinds of short term observations. The first depends on the abi-

lity of the receiver to detect the presence or absence of the jammer

signal during each chip time interval, and modify the metric used by

the decoder accordingly. The second kind is, in a sense, a second best

alternative to the first and involves measurment of p, which is the

duty cycle of a pulse jammer to be discussed below. Presumably, p can

sometimes be measured even when the presence or absence of the jammer

signal cannot be determined reliably enough for each chip signal indi-

vidually. Receivers having channel parameter information will be refe-

red to as having "Channel State Information" [CSI), whereas receivers

* By "uniform” we mean: Practically nonselective over a band which is
at least as large as that occupied by a chip signal.




e : e srprmens :—-——ﬂ

having CS1 and also capable of detecting the presence of the jammer for

i n,

2

——— e A, o

each chip signal, will be reterred to as having “Jammer State Informa-
tion" [JSI).

For receivers / transmitters h;ving ESI, we introduce the.
option of using non-uniform frequency hopping among M sub-bands. Coded ;
CS are discussed, which use this information for establishing the opti-
mal hopping strateay and also in the decoding process.

The simplest special case that we study is the uniform channel,
for which the received average signal®power, the noise power density

and the jammer propagation loss are all uniform across the band ¥. ;

Another, more- general situation, is the "Slotted Channel” shown below:
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; Figure 1 : The Slotted Channel




s’ y

-
LR

R

N

S e e e a — Ak

¥

<

For each sub-channel we have a different noise level, average signal
power and jammer propagation loss. Interfering signals, which "innocent-
Iy occupy any of the sub-bands, are treateq'as an elevated level of
background noise covering uniformly thit specific sub-band. This can be
Justified by the fact that interfering tones experiencing Rayleigh fa-

ding appear as Gaussian noise at the.receiver.
&

2.2 Jamming Technilues

Two basic jamming techniques are examined:

a. Noise jamming.

‘b. Multi-tone jamming.
We assume that the jammer has the option of distributing his total power
J in any way across the bandwidth W. When considering a uniform channel,
we assume partial-band jamming. In this case we denote by NJ the band

"covered" by jamming noise, and define

P 9-;;1 {2.2)
where p is the jammed fraction of the total spread spectrum bandwidth W.
Alternatively, we could regard p as being the duty cycle of a pulsed
Jammer., Performance-wise these two methods are equivalent due to the
ideal interleaving that we assume. For nonuniform channels p can only be
viewed as the duty cycle of a puised jammer.

For each receiver considered, we carry out the analysis for arbi-

trary p, and finally find the performance under the "worst case p".
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2.3 Receivers Studied

Out of many possible receiver structures, that may seem approp-
riate, we have chosen to examine the following :

a. Hard decision with ng.

b. Hard decision with no JSI.

c. Soft decision with no JSI.

d. Soft decision with JSI.

e. Quantizer-limiter receiver with no JSI.

f. Soft-decision-limiter receiver with no JSI.

The basic transmitter/receiver structure, common to all the systems
considered in this study is the conventional noncoherent orthogonal
FH/MFSK system. During each hop of duration Tc the modulator generates
( i "~ one out of M tones according to the K = Tog,M bits currently in the
‘! modulator register. The modulator output is shifted to the transmission
frequency by the FH carrier generator, which is controlled by the PN
‘ sequence.
A1l the receivers that we consider contain the following :
1. A frequency dehopper.
ff 2. A bank of M energy detectors.

3. M samplers.

APy

4. A processing circuit or computing device to compute metrics.
The basic receiver is shown in figure 2 and a typical energy detector

th tone was sent during the nth

in figure 3 . Assuming that the i
chip time interval: (n-l)Tc < t < nTc, we have at the dehopper out-
put :

H.: r(t) = Ancos(wit+ en) +n(t) , (n-l)Tc g t<nT,

13
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where Tc is the chip duration. Since a noncoherent Rayleigh fading

channel is assumed, the probability density function of An and en is:

-8 .l
PAga) = exp { - f
n On

1
0<H <2n
Pe(e) - ‘2‘1? » L3
n 0 , elsewhere

where o, depends, in general, on the transmission frequency used

th

during the n™" chip time.

2.4 Basic Rules

Our basic assumption is that the jammer knows everything there
is to know about the channel, propagation loss, the equipment used by
the "target CS", coding and interleaving techniques, with the exception
only of the random PN sequence used to Hop/Dehop across the band. The
CS's operator either knows all relevant parameters of the jammer,inclu-
ding the jammer's total power, or supplements his information with
"pessimistic but reasonable" assumptions. This formulation establishes
a Tower bound on the performance of the CS under jamming. The problem
is therefore a minimax problem: The CS operator chooses that set of
parameters which achieves the best performance when the jammer excerci-

ses his jamming ability in the best possible way.

2.5 Definitions
We now introduce some additional definitions that will be re-

quired in the sequel.

16
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When considering uniform and negligible noise channels, we denote the

received jammer power by J, and define NJ as:
_J
Ng=w

where W is the total spread spectrum bandwidth. When a uniform noisy
channel is considered the single-sided spectral density of the additive
white Gaussian noise is denoted No and the total spectral density of

the received noise is:
Nt = NO + NJ/p

in the jammed part of the band and:

in the unjammed part of the band.

Next consider conventional MFSK signaling over a Rayleigh fading channel
with additive white Gaussian noise of single-sided spectral density No'
Let Hj be the hypothesis that the jth tone is sent and assume that the
average signal energy at the receiver is Ec' The square roots of the

M energy detector outputs (see figures 2, 3) :

yl’yZ""’yM

are independent random variables with probability density functions:

2
2y. Y
P(y;/H;) = ——:’— exp { - —"-}

0 C NO‘PEC

17
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We now introduce a set of parameters indexed by the L sub-bands. The

th

received dignal at the j~ sub-band is :

Ajcos(uﬁit+eji) s 3=l,...L 5 d=l,.00 .M

where Aj is a Rayleigh distributed random variable:

a 82 .
PA.(a) =‘—2—8Xp - y J=1,...,L
J -0 2°j

which implies:

2, _,2
E {Aj} 20j
and
%; 3y Ogac<on
Pe(a) = ' s j=1,...,L
ji
0 ; elsewhere i=1,...,M
Hence, the average received energy per chip when the jth sub-band is
used is;
= _ 2
EJ och

when TC is the chip duration. The noise distribution is given by:

No= (NpNpee N )

where Nk is the single-sided spectral density for the kth sub-band.

18
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The jammer distributes total power J over the L sub-bands with distri-
bution:
}-)- = (Jl,Jz,.on 'JL)

where

L
EJJ.=J.
J=1

and J denotes in this case the total jammer transmission powsr.

The jammer's propagation loss, c., also depends on j. Hence, the cont-

J
ribution of the jammer to the noise power density of the jth sub-band,
qecoted NJj,1s
NJj = Jj cJ

Whether pulsed or partial-band jammer is assumed, some received chips
will be hit by the jammer and some will not.

The binary sequence:

| L= (2,....7)
f? where , th
: 0 , the i~ chip is not hit
. =
! th .
1 , the i™ chip is hit by jammer

specifies the jammed chips.
When hopping across the band, the hopping pattern will be defined by

the vector L:
-l; = (jlijzn'- ’jm)

P
M = o de »
B Vo - =
I G NN ST UYL NP
.

where .
jk€{1,2,...,L} s k=1,....m

kth

,: ‘ i.e., jk specifies the sub-band used for the chip. Note that for

Y kel TR ¥ ol SAF TUNES B AR

R A S W



any transmitted sequence x, consisting of m MFSK chips, and denoted:

X = (x(l),x(z),...,xm)

“there will be m sets of energy detector outputs:

y - @,

where
x(")=(yl(").yz("),...ym(")) 5 n=l,...,m

th

and yi(") is the 1th detector output at the end of the n chip

time.

20
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CHAPTER II1
METHOD OF ANALYSIS AND PERFORMANCE EVALUATION

3. For uncoded CS we use the bit error probability as a performance

. ' criterion. For coded CS, however, exact bit error probability expre-

yoreTe

-ssions are typically difficult to obtain and upper bounds are used to

evaluate performance.

O

3.1 A General Error Bound for the AJ Communication System

At

The coded AJ communication systems that we consider iﬁ this study
are represented by the general model shown in figure 4 . We consider
the sub-system shown inside the dotted 1ines as an equivalent memoryless
2 channel available for sending coded data. The memoryless property is
f‘ ! ( justified by the ideal interleaving that we assume. We then compute the

catoff rate [3] Ro of the equivalent channel, which represent the prac-

b o

§ tically achievable reliable data rate per channel use. For any specific
code we can then derive a bound on the coded bit error probability of
the form :

P, < B(Rb) (3.1)

b\

which is a function of the cutoff rate only. Since the function B(RO)

»
-
"
e St alh P
N

{s unique for each code, and Ro is independent 6f the code used, we are

able to decouple the coding from the rest of the CS. Thus, to evaluate

various anti-jam CS we can simply compare the cutoff rates of these

- —

systems. By way of maximizing the cutoff rate, we also optimize certain

parameters of the CS under study.

21
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Memoryless
x € x Channel| y€ v
e —
P(y/x)

Metric m(y;x)

Figure 5 . Equivalent Memoryless Channel
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The equivalent channel of figure 5 has input symbols which belong to
the alphabet X and output symbols from the alphabet Y. The receiver uses

the metric m(y;x) to make decisions. Consider two sequences x & X €Xm

and the pairwis.e error probability of the receiver choosing '_)?_ when x is .

transmitted, assuming that x & X are the only possible transmitted seg-
uences. We denote this probability by P(x > X).

Hence :

Px+3R) =P, ):m(y i) € m(y ?)/ f

n -~
=P, i r?;'l Im(y 3X,) - mlysx )] > o/if

We now use the Chernoff bound [3] with parameter x>0:

m .
P(x » X) < E[exp{ lﬁ?:l[m(yn;xn) - mly sx 1Y/ 5]

n=

m
]—_[lE[exp ix[m(yn;?n) - m(yn;xn)li /Xn]

Defining :

D(x,X;2) 2 E[exp {(xm(y;Xx) - m(y;x)]}/x]
(3.2)
We obtain the Chernoff bound :

Plx> B ¢ JT 000, %,0) (3.3)
n=

Where :

D{x,x;x) =1 all xe€X . (3.4)

o,
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3.2 Evaluation of R0 and the Bhattacharyya Bound

Suppose that all the components of the sequences x and z are

independently chosen according to some probability distribution

q(x) , x€X. The cutoff rate is then defined as:

R =max max Ro(g;x) (3.5)

° o g
where Ro(g;)\) is given by the relation :

Rolat) [D(x;?;x)]

=§ gqumamuaa)

since, for MFSK the channel is symietric and the input Alphabet size is

|X} = M, we have

q(x) =%— s XEX

and
D(2) s X # x
D(x,X;1) = (3.6)
1 y X = X
Therefore:
, Rolain) Le(H-1)00)
and : .
Ro = 1ogzM - 1092[1+(M-1)D] (3.7)
where :
D= min D(2) (3.8)
A>0
25
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Equation 3.3 can then be written :

P(x + ) < DOH(XE)

When W(x,X) is the Hamming distance between x and X. To obtain the

tightest bound we minimize this bound over A > 0 to obtain :

p(x + %) ¢ H(XT)
When using a specific code with many code-words it is then possible to
evaluate the bit error probability of the code by union bounding all the
pairwise error probabilities for each code-word and then averaging over
all the code-words. This results in a bit error probability bound of the

form :
Pp < G(D) (3.9)

where G(D) depends on the code being used. Since D can be expressed in

terms of Ro’ we also have the alternative form :

Py € B(R))

Throughout this study we use the Chernoff bound to evaluate the
performance of coded CS. For reasons which later become apparent, we
consider receivers which employ severa) different metrics. If the metric

happens to be the ML metric, which has the form :

m(y;x) = atnP(y/x) +b , a>20

we obtain :

D(x,X;1) = E[exp{k[m(y;?) - m(y;x)1} /x]

= z exp{>.a[enP(y/X) - enP(y/x)1}P(y/x)
y

~ p ~1xa
-%‘P(y/x) p-g%}]




The minimizing A is usually 2a = %

Hence:

min D(x,%;1) = Zﬁ(y/x)P(y/?) (3.10)
0<A y

which is the Bhattacharyya bound ([3].
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CHAPTER 1V

UNIFORM CHANNELS WITH NEGLIGIBLE BACKGROUND NOISE

4,1 Soft Decision Receiver With JSI

Our basic assumption is that the receiver is capable of detec-

ting Z and is using it in the decoding process. In the uniform chahﬁe] -

case we denote the total received jammer oower by J and define:

Ny = /M (4.1)

The conditional density function of W given x and Z is then:

m
an()i/bl) = nl;[l PM(x(n)/x(n)aZn)

and "
PylyMrxM 2 ) = n p(y{Mx(M,z.)
where
( (n) (n)
E exp E H x(")=k
N /p+ N /o+
J J
Ply, M/x™ 2 1) = |
(n) (n)
\_-NT exp H x(n)#k
and / zy(n)
k exp {4 ~ yk H x(")=k
Ec Ec
p(-yk(n)/"(m’Zn=0) 3 { (n) (n)
G[yk ] s X'k
Next define: \ ,
(n) (n)
. N./p M y
6{y,2) = T] J 'N§73 exp 4 - ’%373

=1 NJ/p+EC k=1

e s et K. Bl B et b et ot e e -




i { m E 2
: MysxZ) = Y - y('(‘,),)
n=1 (NJ/p+E )NJ/p X
n:Z =1 c
m 2
- (n)
i n=1 " ’ yx(")
where: :
a® —— S
(NJ/p+EC)NJ/p
Also let 2
(n) (n)
n o Y [T s
Flysx,2) = | exp{ - —— 1 k
n'-‘il=o ¢ e k=%n)
"“n k#x
Then

Paa(y/x.2) = G(y,Z) exp{A(y;x,Z)}F(y;x,Z)
The maximum 1ikelihood [ML] receiver uses the total metric:
m{y;x/Z) = nP y(y/x,2)
2n G(y,Z) + A(y:;x,2) + n F(y;x,Z)

| =

But G(y,Z) does not depend on x.

a(n) (n) 2

X # X : (n) (n)
- Do) vl o
5 Ln exp§ - — I §(y, )] =
- . E. k=1
1 kx(n)
L;i Hence, it suffices to compute:
r - m 2 m M
f m(y;x/Z) = n§=)1 Znyi'(',),) + n2=:1 £n J:[l G(y,(("))
F ‘ n;zn=o kfx(")

29
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Furthermore, for all x such that

a0

(4.2)




for every sequence x C to determine the maximal 1ikelihood sequence.
To find the performance of the receiver, we start with the

Chernoff bound:

P(x+ %) ¢ E[expil % [m(x(");?(")/in) - m(y_(n);x(")/zn)]l /i]
n=1

. m1 E[expi““‘(l(n) &2 - ™2 )]} /i (n)]
n=
m

= D(i(n),x(n);k)
n=1

Where

ot (M xy 2

= E[exp {A[m(x‘n);i(")/zn) - m(x‘");x(")/zn)]}/x(")]
Since the ML receiver uses the metric:
m(x(");x(n)/zn) = n pM(x(n)/x(n)’Zn)

we obtain :

p(&{mM,x(M 5y <

= E[exptrian Ry ™ /2™ 7 ) - o PM(X(")/x(n),Zn)]}/x(")]

e de { P (Xﬁn)/x( n) .z ) //(n) . X (n)
p (1 )/x(") z)

™R 2 ( (M gy (m(n)
I [ [ ﬁ)/jnTz P PM(x(n)/x "2 aJOy -y /X )




{ The value of X which minimizes this bound is A= %
Hence:
min D(*("),x(");k) = D(;(n)’x(n); %0
o<\
3 (n) ,aln) (n), (n) 5y 4(n) . (n) s (n){ -
Ei f[\/;(x AN P ™M,z dy My Jx
o o
- (4.3)
Which is the Bhattacharyya bound.
But since
P 3 k=1
Pzék) =
1-p s k=0

this can be further reduced to:

1 ; X(n)':i(n)
o™ (M) 3y -

D ; x(n)#k‘(n)

’ Where :

= (1-p) ff JP(X(")IQ("),O)P(x(n)/x(n),OT dygn)..dyrg") +
o o

‘o f..fﬁyf"’/f‘")J)P(y_‘“’/x‘"’.l) ay{m..ay{"
o O

Substituting the conditional probabilities that we have in this case,

S "

“
-
- |
%

We obtain: > 5
© ( ) (n) (n) y(n)
™ m ] Ym Yyl
D= (1-p) f f —————exp\- X
Ec Ec
31

) LS RTTT S ] LR e b e - . ol

APPSR A




!
t
¥

M M
x [I T sti™) it G(y(")) ay{™...ay{™ 4

kf?(n) k#x(")
2
(n) ’((r)\) yﬁ(r)n M 2y(M ymo i
exp § - Il exp{- =1 x
(E +NJ/D)2 EC+NJ/p k:l( ?J/p NJ p J
#x\"

Ll

M 2y(n) y(n) (n) (n)
n n
X 3£g -N§75 exp ¢ - —%375- dy1 ...dyM

J#i(n)

The first integral is clearly zero. The second can be integrated over

y,(") .
=l M s i gep(n)

and finally reduces to:

o 2
2y d
p{of\ﬁ‘lJ/o(EchNJ/p) { xz{ Ny/otE, J/D) } y}

aNy/o(Ny/pHE ) 4(1 + ok Ny
(2Ny/0+E )2 "2+ b))
Therefore
Plx + ) ¢ OM(&:D)
32
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) W(x;x)

(1 + pEC/NJ
(2 + "EC/NJ)2 (4.4)

"It is easily verified that p = 1 maximizes this bound, i.e., contin-
uous jamming (broadband-jamming) is the worst case jann@ng for this

receiver.

Or
. 4(1 + E_/N))
ch =max D = < Jz
o<p§1 (2 + EC/NJ) (4.5)

- AL D = e eeialiee . ik el . L L.l L

4,2 Soft Decision Receiver with No JSI

Since we have just seen that continuous jamming is the "worst
case jamming” for the receiver analyzed in 4.1, and since the receiver
we presently consider does not have JSI, we are tempted to try the
simple metric: i

n 2
nyx) = % v 0.6)

n=1 x

which is just an equal weight summation of the energy detector outputs,

which correspond to a sequence x.

2 2
P(pzus[exp{x 2 (v %y f/—]
m 2 2
- B oo 8 /]

2
DR 1NN =s[exp§ y(?r)n -y"‘,)nu /"(")J

Hence

- 33 ﬂ




b | 2 2
| . = (1-p)E [expi)‘ (y;(;(‘r)\) -yi’('zl) ”/x("),l,fo] +
2 2

+ pE [exp {A y;(;(‘r)‘) -yir(")‘) ” /X(n)'zn=1]

: (n) aln) ,  (n) (n) (n) fctd
But given x'' '/, X #x | qnd Zn R y)?(n) & yx(") are statushc;ﬂy
independent.
Hence, for ')?(n) # x(n),

o(a(M x M) =

. 3] /() 5 o). 2] /.,
(1-p) E[expixyg(n)l/x ’Zn 0] E [exp {— ).yx'('n)l /x ,Zn-O]
+ o€ [ exp Ly /5" g -11 () /(“) z -1]

¢ Xp yx(n) > n" exp ¢ - .Yx(n) X [ n"

We now use the fact that for a Gaussian random variable x~N(0,6)2():

-5 E[exp{sz}] = 1 3 A< —2’—1
i VI-ZAoi 20, (4.7)
,;' : E[exp{-xxz}] . - ;A D> - -1—7—
. : l+2)\o§ 2c’x (4.8)
Since :
D ) 2 2 2
4 Wl e )
;:-‘l
- and since, given (M) and Z,s rc(::) ) 'éz) are Gaussian and statisti-

cally independent (see figure 3), we obtain:
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p

211 [ 2 2
E eXP{*Y{"’ f = E exp{k(réz) + rgz) )f]

o -

i 2] i 2
= E Lexp[lrga) f T 2 exp]krga) ”

DR TE UL RO

= l'p + P = D()\)
(10E ) (1-ANy/p) [14A (Ny/p+E )] {4.9)
D<x < g
Ny

Now we want to find the worst case D by taking the maximum over o,

0<pg 1 and the minimum over A: 0 < A < %%-
J

i.e.,

Dyc = max min D(7)
o<pgl o<A<p/NJ

Note, however, that the condition:
p
A<
N
implies that for any allowable value of A, the first term, namely:

1-p
1+AEc

approaches 1 as p -+ 0, and therefore,

min  0(x) &>0.1
0<X<p/NJ
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We expect that in general, the Soft Decision receiver using this metric,

has poor performance under a low duty cycle jammer.

Although thg receiver now considered does not have JSI, it may
still know p. In such a case the receiver can use the ML metric. We
want now to find this metric and to analyze the performance of a Soft
Decision receiver using the ML metric. The conditional probability of

Y given the transmitted sequence x is:

m

nﬁ[E P (x("’/x‘"’,k)Pzn(k)]

k=0 (4.10)

f[ [PM(,X(")}x("),o) (1-p) + PM(x(n)/x(n),l)p]
n (4.11)




( 2
o exp exp { - '
EC+NJ/p (EC+ Ny/pINy/o J k=1 Ny7o Nyl

Let 2
(n) (n)
(n) ) Y
A | R G e"”{‘ Ny7p |
:
Then 2
(n) (n)
2y (n) Y (n) (n)
Py(y/x) = J} (1-p) e P - EL s(y,"’) +
¢ (n)
k#x i
(n)2
Mo ) { m e ”
+ p -—--——-G(y ) exp
Ny/o+E, +E (EC+NJ/p)NJ/p
Now we take:

m(x,X) tn pmM(x/X) =

2y () (u(»))
m n

- 2 [(m) —x(n) exp{ - }n sy{M)
n=1 ) k=

© T e

(n)
y E
+ ‘p NJ/p G(l(n)) exo{ X(n) ¢ }J
E+Ny/o (E.#Ny/0)Ny/0 (4.12)
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i.e., the receiver uses the ML metric. Therefore, as we have seen

above, the Chernoff bound reduces to the Bhattacharyya bound:

P.x+X) ¢ D"BE o uhere

D - [[ W,M(X(n)/x(n))pM(l(n)/x(n)) dy&")...dyén)
0 o | - |

substituting Py(y(™/x{™) & B (y™ /M) ve obtain:

(n)2, (n)2
AYTESN
jf J( 6(y(™)ex ; (1) 75t idyﬁ“’...dyé"’
NJ/p+E 2N /0 (E_#N /o) |
a(n)

M, g™ isR

Carrying out the integration over ygn)_ , i=l,...,

We obtain the double integral:

o E 2
- 2y 2 1 c
D=p / expqy (— + )}dy
[ o { Mo (nyrerE dany /o

V(NJ/D+EC)NJ/D

;. E +2N./p 2
- [ 2y exp i‘ y2 ¢ J f dy]
oF  V(NG/otEN/0 (Ny/o+E J2Ny/o

=p 5
( E l (4.13)

This is exactly the value of D obtained above for the Soft Decision

receiver having JSI. We conclude that a Soft Decision receiver with no




JSI, but knowing p, performs exactly as well as a Soft Decision receiver
having JSI, provided the background noise is negligible.

As before, the worst case p is p=1, in which case:

max O = (4.18)
o<pgl
2 + FT"
4.3 Hard Decision receiver with JSI

The input and output alphabets of the channel are:
X =YY€ {1,2,...,M

and the conditional probability

0 s y#x , 1=0

—%T' s yfx , I=1 (4.15)

Where :

(o) = “2‘:1 (M-l)(_l)kﬂ 1

k=1 ' K of,
1+k1+'ﬂ——‘
g

Since the channel is memoryless

m
Pa(y/x.2) = ﬂl Py /%02,
We choose the metric

m(yp3%,/Z,) = n Ply /%2 )

which is the ML metric.




! Hence, the Chernoff bound reduces to the Bhattacharvya bound:

P(x » §) ¢ DW(%X)

Where

n n"n

D¢ { ) ‘[P(yn/‘)?n,zn)P(y /x ,1) /x,
y

= (1-p) Py /% 00P(y,/%.0) + 0L VPly /x ,1)P(y /3 .1)
y y.
xn# ?n
But, for xn#xn s

Py, /x,50) # 0. => Py /X ,0) = 0

T herefore:

o
[}

o L Py /x s DP(y /R L 1)
yn

[1-e(p)lelp) , M-2
°[2 ‘I_TLLlﬁ-l ol . me(")] (4.16)

It is easy to verify that p=1 maximizes this bound, i.e., continuous

K e

jamming (broadband jamming) is the worst case jamming for this receiver

also. Substituting p=1 in the bound 4.16, we obtain:

gt

AL L]

S a Lo
R b e ——— e SOt s hl
s

ch=2 —M-__ +M—:T€ (4.17)

where ¢ denotes e(1).
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‘ 4.4  Hard Decision Receiver With No JSI _ ' 7

The input and output alphabets are:
X=Y € {1,2,...,M}

but the conditional probability function is now:
1
Ply/x) = T Ply/x,z)P,(z) =
z=0

= (1-p)P(y/x,0) + pP(y/x,1)

But:
1 s X =Yy
P(y/x,0) =
0 ; x#vy
1- e(p) y X=Y
P{y/x,1) =
elo) s Xty
Where ;
M-1 . .
S(O) = 2 (M;(l) (‘l)k 1 1- .
_ k=1 1+k(1 + oE /N,)
} ¢’
' Hence:
1 - pe(p) 3oy =sx
P(y/x) =

- e;%g)_ I B (4.18)

- In this case we use the simple metric

mlypsx,) = - Wiy .x)
5
5?3 This is, in fact, the ML metric, since it can be written in the form
o m(y,sx,) = aznP(yn/xn) + b; a>o0
]

Hence, we can use the Bhattacharyya bound:

W(x;X) ‘ |

P(x-R)gD




Rzl o

P

~

§»/P(y/xn)r>(mn) = 5 R

o
n

? pe(pzﬂ-pe(oll +p;'415%€(p)

(4.19)
It is easily verified that p = 1 maximizes D for this receiver a]so.
j.e., (
= _ e(l-¢ M-2
Duc = X P AT TRIC
s (4.20)
where
e T e(1). )

Clearly, the results of the receivers discussed in section 4.3 and in
this section should coincide for p=1, and indeed we see that the cor-

responding bounds are also the same.

4.5 The Nuantizer-Limiter Receiver with No JSI

This section contains two parts. In sub-section 4.5.1 we analyze
the performance of the.Quantizer-Limiter receiver under broadband jam-
ming (p=1), and find the optimal quantization-step size T, which is a
function of both Ec and N;. In this derivation N; could equally well
represent the spectral density of the noise introduced by a noisy
channel, or the combined density of channel noise and jammer generated
noise. In section 4.5.2 we analyze the performance of the Ouantizer-
Limiter receiver under partial band jamming, assuming that the receiver

.not knowing p, uses the optimal T for the broadband jamming case.

4.5.1 Uniform Channel and Broadband Jammer

The basic receiver structure is that shown in figure 2 , but




the output of each energy detector is ouantized into one of four output
levels. The discrete output of M such enrgy detectors feed the compu-
ting circuit, which computes the metric for each code word and finally

makes a decision.

2
’T cosw t z(") (n) Comput 4
r i i yi .
ircuit

Figure 6 The Quantizer-Limiter Receiver

The input alphabet is x € {1,2,...,M} and the output alphabet is:
Y = LypoYps.--s¥y

where:
yie{091’293} B ’i=l,...,M

The conditional probability of y given x is :

M) ()
P (/) = 11 Py(y /% T0) (4.21)
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B where :
- (x(“)/x(“))=[§3:6(y(") ) pa] M $e(-g)e
jro Vx® ) Tl {0 VK 0
k#x (™
P 6(;(?)) J)P% M3 .
-2 [ Zey™-0w,
2 s y(n) j pd k=1 j=o .
j=o \x®7/'°
(4.22)
where : . : i .
Pl - Pr{jT<z§“’<(j+1)T/x<“)fk} . 3=0,1,2 ; k=1,... M
pg - prfsrszﬁn)/x‘“)fk} . k=1,...,M
. n=1, ,M
and : ]
Pl - pr{stz§“)<(j+1)T/x(“)=k} s §=0,1,2;  k=1,....M
P? = p 137 <2 /x ™ =p) s k=1,...,M
! n=1,...,m
£ To find P and PJ we note that Z{™ is Rayleigh distributed. In parti-
g o 1 k
! cular: 27 (0 Z(“)z
1 PZ 1x™=k) = K exp{ - K
g Ny*E, Ny*Ee
B R 2
E i : (n) (n)
.. 27 z
.}A} . P(zﬁ“)/x(ﬂ)fk) = Nk exp {- kN
‘ J
- J
|
! Hence :
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(4.23)
Whereas : | 2
Pg = 1- expz- L f
N, +E
J ¢
2 2
Pi = exp {- T. E - exp i- ﬁgll_f
NJ+Ec NJ+EC
2 2
P% = exp .(_Z_T_Ll - exp Q%)__
N,+E J
J ¢
2
P? = exp {- _(ili
NJ+Ec (4.24)
Hence :
. 28y -3)P]
j=o x®
Py/x) =|11 5 — | 6(y)
"l Sely -]
j=o x" (4.25)
where :
. G(x) = n M_ éé(y(n)-j)PJ
n=1 k=1 j=o ¢ ~° (4.26)

Therefore, the ML receiver computes:

{
j
J




o
b
o
-
3 i
:

]

0 (4.27) .

for every sequence x to.determine the most 1ikely sequence.
Since we are using the ML metric, the Chernoff bound reduces to the

Bhattacharyya bound, and we obtain:

- 2 23 o@r[f o]

(n) (n)

j=o
y (n) y*(n)

3 . ] A
Y .
\/E% 6(’:?@'3)"3. 2 §(y~<n)’J)P1]

- 3 e 2
- Z\/[ 2 sly-3)p [2 8(y- J)PJ]
LY J=0 dLj=0
- (4.28)
j=°V/ o
Now let: E
‘; __I_. and ¥ = Wg-
% J (4.29)
then :
2oy . T X
L B ON(1E/N,) Y
J NotEe  NolI*E/N,

Substituting the above in equation 4,28 we finally obtain:




S

AL - m‘*Aw‘ JF

“»

2 - w12 . 2
D(T)= Jgollrexp;-(.]'T)zi-exp{—[(j+1)‘l‘]2}:| [exp{- {l}%}_exp%_ [(..il"'l)l] H

2 2
+ expi- (3;) (1+ liw)l

.29
Hence: (4.29)

D = min D(T)
o<t

The minimizing value of T depends on ¥, and therefore, T =T N;
depends on both NJ and EC. Figure 7 shows the optimal value of T
as a function of ¥ and the value of R0 obtained with the minimizing

T under broadband jamming.

4.5.2 The Quantizier-Limiter Receiver Under Partial Band Noise Jamming

We assume negligible background noise. When jammed the power
spectral density of the noise is NJ/p where :

=9
o= W

The receiver, not knowing p  assumes continuous/ broadband jamming and

therefore uses the same metric and the same T as for the p = 1 case:

3 .
(n) :\pd
2 6(yx(n) 'J)Pl

m(y™;x®) = gn 332 @) 1o | (4.30)
n +Ypl .
jgo G(yx(n)-‘])Po

but now this is no longer the ML metric , hence:

P(x ~ %) ¢ E[exp(klm(x;_i_)- m(x;ﬁ)]) /5] =
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L

Y o
" Thep :

o(n)

( (n)

(n

" for &0 # x(n)

°ET<‘n>_

3 .
> sly-i)P]

3 .
Y sy-i)Py

[N
1]
o

N
m
1]
x
o
P Y
>
o
3
(2}

(x™ g™ 5 =

) A
/x(“) 1 =1 + (1-p)E

)

{4.31)

(n)

Now we must define two sets of probabilities: one describipg y

the jammer is present and the other when the jammer is absent

Let:

Pg(i) 2p.d '((n)=j/x(")fk, 2=}

p3(1) 2 b ty{Meyix(Mek, 7,50
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j=0,1,2,3 ;
n=1,...,m

1=0o19

k=1,...

when

e




T I S
- o TR T

g!

il -

and: .
k 2 2
P{(l) = exps- M—}- exp {- ME 3 J§=0,1,2
NJ/D+EC NJ/D+EC
2
P;(l) = exp{- __ﬁr_)_
Nj/o+E,
4.33)
Hence : (4.

5 E,G(Yi(n)) 25(y J(n) J)?Ji‘l)] (%G(yi?v)\)) [ is(yfnr),)ﬂ)"g“’]+
Y (n) Yo(n)
() y M o) _ypd
*1-) 260 () [an(’,(n)ﬂ)%(")] .

Y (n)

-( (y.(,,)) [Es(y -a')Pg(o)]
—(n)

50
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Ld

Ta TR

S e e e o A e el -

)

PO 3 J A . pJ
=(1-p)(~,},) pX {o)‘ ) o 2 P (1)‘ 3 S b (1)(—5 -
Po =0 "] 3=0 P
=D()) (4.34)
Where
D = min D(2)
o<\
and: .
Cuc = min 2% 20 (4.3%)

This bound is valid for any value of N E and T, or ,using the
normalized variables, for any value of ¥ and T. It is of special
interest , though, to evaluate the performance of the Quantizer-Limi-
ter receiver when, for each value of ¥, the receiver,not knowing o,
selects that value of T which optimizes its performance under broad-
band jarming. That value of T is shown in figqure 7 . Choosing T accor-
ding to this figure, we have calculated the "worst case p" and the
bound 4.35as a function of V. Puc js shown in figure 8 and the bound
4,35 was used to compute Ro’ as shown in figure 9 .Note that the per-
formance of the Quantizer-Limiter receiver, as shown by the bound 4.35, ~ 3%

is (up to ¥=34 DB) better than that of the Hard Decision receiver.It

could clearly be further enhanced,if the "truly" optimal T were used.

4.6 The Limiter Receiver With No JSI

This receiver has the same basic structure as the Soft Decision
receiver discussed above. The only difference is that the output of

each energy detector is clipped at ¥; = T, i=1,...,M.

The outputs of the M clippers feed the computing circuit, which com-
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putes the metric for each code word and finslly makes a decision.

2 .
' t=nT
;;— cosw, t (n) (n) (n)
. zg ’—- zg vy
sinm t
RS T Comp.
2 circuit
‘ —nT
] { |
! [

Figure 10 the Limiter receiver

4.6.1 Uniform Channel and Broadband Jamming

The input alphabet is : x = {1,2,...,M} and the output
alphabet is: y = [¥1s¥ps--s¥y] where: y; € [o,N

The conditional probability of y given x is:

m
PmM(x/-’i) = EIPM(X(H)/X(N))

(4.36)
Where:
M
ity ™) = ) T g™
kfx(") (4.37)
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Here:
E | 2
Q(y) & 8(y-T)P, + [1-uly-TH—2L expi- —LE—E i y20
NytEc Nytee
‘where: (4.38)
P1 = Pr{T sZén)/x(n)=k} s, k=1,...M; n=1,..,m
2 i
- exp { T } : |
NJ+EC (4.39)
and u(x) is the unit step function.
Similarly: ’ _
Q (y) 2 6(y-T)P_+ [1-U(.v-T)lle exp{- ¥ 3 Y20
0 o NJ NJ
where: (4.40)

: PO% Pr{TsZI((")/x(")#k} . k=1...M ; n=1,..,m
3 | 2 l
- | = eXp E' (4.41)

Ql(y(?r)))) "
s Ry MMy - X T g (yﬁn))

QO (yx'(‘n )) k=1 0

Z|

S
x

x

(n) (4.42)

AR e 2

‘v‘..v ‘.

.
N
IR
e h e ek i L

where:

(n)y 2 i (n)
S = I G0 (4.43)

" The ML receiver computes the total metric:




Tt I~ > 1% Yy

A e

fiacin o - L o
e e

A il ik . .
»

“for each Sequence x to find the most likely sequence. But, since

L]

m(ys;x) = &n ﬁ PM ")/x("))
n=1

G(,y_(")) does not depend on x , it suffices to compute the metric:
(n)
l(yx(n))

(n).,(n)y _
m(y ) =2n
o(yxr('n)) (4.44)

Since we are using the ML metric, the Chernoff bound reduces to the

Bhattacharyya bound, and we obtain:

o(T) = /( | ] | /610((n))q G PNL O P06 e,
n n

n) ya(n

-

2
l [\%(%T)P +H1- U(y-T)l—~*Y— exp{ ~¥E—§ .
J+ c

N 2
2
. %(y‘T)PO"'[l-U(Y-T)]%l exp {- NLi dy
J J

-7 2

- [rps + B2 A B 7S W B
[ \/NJ(NJ+E y oY (NJ+EC ' Nd)f Y

But:

[ i ]

0




I W G

Hence:

D(T) = PP, +

ol anpeE, 2N (NS+E,)
Now let: ‘e T (4.45)
/N
y2 EE
J
Then: 2

2
1 2+v| , 2Vivy 12 24y
= {exp { z—wl oy [1' exp { TW}]

Note, that when T -+ =, the bound reduces to:

(4.46)

D= i(___1+‘¥)
2
(2+y)

which is the result we had before for the Soft Dgcision receiver
without clipping under broadband jamming.
To improve his performance the receiver should choose T so as to mini-
mize D(T). Hence: .

D = min D(T) (4.47)

o<t

4.6.2 Uniform Channel and Pulsed / Partial Band Noise Jamming

We assume negligible channel noise. When jammed the power

spectral density of the noise is NJ/p where:

. 9
No= W
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The receiver, not knowing p, assumes continuous / broadband jamming

and therefore uses the same metric as for the p=1 case:
(y(
(n)

(n) ;X(n)) = 2n
Qo(yx(n))

m(y

but now this is no longer the ML metric. Hence:

P(x > X) ¢ E[exp [k[m(y_;z) - m(y;x) ]]/ ]

or QO o))
= E[exp{)\z [zn—l——’((é)l Ln _l_f.(_)_)_]l/ }

n=1 Qo(y-,?(n)) by (n))
Then, for x(")# x(")

p(x{M,2(M ) - E[exp{ ((n) n Z/ (n ):‘
| (y..(n))ol (n)

[ OV (Y(m) / (n)
= E X
A(n))°1(y )

QIU.\(%))QO(Y( n)) (n)
=pE T / I =lp 4
(V.<n))°1(>’x
(
Ql(yg?%))o (y (N) (n)
+ (1-p)E Q /x ’Zn=°
Qo(y;(n))Ql(yx(n))
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We must now define two probability distributions, one describing x(n)
when the jammer is present and the other when the jammer is absent.

Let:
| P (0) = P tez{M x(M) <k, o)
P (1) = P ez x(M) w2 a1 k=1,....M
(1) = Pr{T&z'((")/x(") o Z=1) n=1,...,m
- (n), (n) - =
Po(0) = PiTcz,M/x'™ 2k, 7 -0) = &(T) (4.48)
Hence: » )
T T
P.(0) = ex - — = exp{- %}
1 P { . z ¥
[o
2 2
T L
P.(1) = exp {- = exp{- }
! z NJ/D"’ECE ¥+l/e
2
. - T _ =2
P,(1) = exp {— NJ_/E} = exp{-pT"}
P,(0) = &(T) (4.49)
Therefore: (n) (n) A
0. {y )Q y
y 1(%otn)) S Y () /x("> N
> n

o5in) 4 in)

., f i) |

.Y(?z') Qo('yx?"))
X

(n) (n)?
2Y (n) Y (n)
. (n) _ Calyfn) X X (n) .
[G(Yx(") T) Pl(l)ﬂl u(yx(") i NJ/D+EC = )' N,/o+E dyx(")




e s e e A e

[ 01()’(")))
. o(y—x-(N)) .

(n) ) "
[(y‘"’ -T)Pou)ﬂl-uw‘(?.rmw— ‘**"i T}] 5

- A T
P ’NJ+EC i A 1 d .
= |[p2] py(1) + f —2Y_expl-y i d
| (PT) 0 o | 9T NyeE (NS NyEe NJ/"*EC)

4' Pl)\ fT. N ' 2Y_ ex -.v2 R rid - ldy
l b4 \'p';‘ Po(l) + NJ"'EC Na% P (NJ+EC NJ NJ75.

4
A
p 143 2 AY(1/p%y) +14¥ (41
= p (F‘Il, P (1) + ;\\y({}ﬁ\{)’)ﬂw[l - exp{- L1770 }]] ‘

3

, 1
E Vi 1-2 2 -AY/ptl+¥
L -‘\p— Pol1) + %[1 ) e""l' T g H]

A
Ql(y ))Q (y('(‘r)‘)) / (n) 7 =0} =
(1- D)E (n)))Ql(y(nT X * n

A(n

(n) )
Ql (n))

B o ei® ity ot apekod
N LTS oL e

= (1-p)

’—?
ﬂ

XA

Dok am— -
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B e e o A vl A
.

(n) (m? _-
2Y " (n) Y
'[ (y(?g) -T)P (o) + [1-U(y(?z) -T)) 2 " exp {- -X ’])I] dy
X X

Ec Ec X
(n)
(n))
Jn :<:>) il
~(n
y;(n)

2 2 2 N A
=(1- p)( )P (0)+f‘ ) lexp{ ANL+ Ay —dey( A )
J NJ+EC -Ec NJ+EC .

A+l 2 .42 A
- (1-p>§ p—) Py (o) + iy—:l%w—[l exvz T W}]}(ﬁ)

=(1-p) (1- (—1'2'1"_)2);) eXp{ Tz )\‘P2+]+y§ (1+w)1ﬂ f )

AYC+1+Y ) AT vl | (1ew)
Hence: _
D(T;x,p) =
=0} ex 12 MY (¥+1/p)+14y 1_'(1+\y)1+A + (1+w)1+l 5
(1+¥) (v+1/p) AY(¥+1/p)+1+Y A {¥+1/p )+ 14Y 3

2 1-A 1-A
. - AV (14¥) (15 (1+Y) (1+v)
. [;xp{ T 1+ }[1' 1+W-AW/0] * 1+\i'-»1//p]‘+

+(1-p)[exp { T 1‘!’2+1+‘Pf[1__ L""l’)lﬂ\] + QH’)IH‘] 1

¥(1+) AV +14y awhelay | (14v))
Minimizing this bound over A we have: (4.50)
, D(Tip) = min D(T;2,p)
o<
and D, (T) = max min D(T;x,p) i
0<pgl o<h (4.51)
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To improve his performance the receiver should choose T so as to mini-

mize the bound. The effective bound is then:
ch= min max min D(T;)\,p)
o<T o0<pgl o<r (4.52)

Figure 11 shows ch(T) as a function of V¥ for several values of T.
Figures 9a and 9b show the cutoff rate Ro of this receiver for M=2,4

in comparison to Ro of other receivers. Figure 1la shows Puc for three
values of T,

st 4 ot e
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Figure 11. FH/MFSK |

for the Limiter Receiver
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CHAPTER V
NON-UNIFORM CHANNELS

5. In this chapter we assume the following: The jammer uses
pulsed noise (duty cycle p) and nonuniform distribution over the

th sub-band we have background noise of one-

"Slotted Channel”. At the j
sided spectral density Nj’ and in additiog, jammer generated noise
denoted NJj/p when the jammer is “on" . As defined earlier, the hopping
sequence is: L = (jl’j2’°""jm)’ where jn is the index of the sub-

band used in the nth

chip time, an{l,Z,...,N}. We assume that the
random variables jn’ n=1,...,m are statistically independent discrete

random variables having the common probability P(j).

5.1 Soft Decision Receiver with JSI

The conditional density function of y, given x, L and Z is:

m
Pan(/20:2) =TT Py (MrxM 5 .7 )

(5.1)
where
Py ™M 5 2 ) = H piy{M /x5 .2)
But )
2y n) y(n)
| e 0 £y s / A
N, +E. +N,. / N + +N p
(n) (n) Jn Jn Jan n n
P{yk /x J Z 1) { 2
2y, " (n)
T ——— XD N S— s x Mg
\l\‘jnwdjn/p N n+N o

g AN 7 PRS- SO A R S s



ey

and

2
2y(n) y(m
( k exp { - k x(")=k
N, +E Nj +E
P(yén)/x(n)’jn’zn=0) = J n n n n
(n) (n)2
2yk Yk (n)
L N, exp ¢ - N x U #k
Jn in
Next defining:
2
N. +N.. /p (n) (n)
6(y,L,2) £ ﬁ n_ Y ﬁ__z_’fk exp_‘_j_k
T nel N 4R N Je ke Ny NG 7 N; Nyj 7
n:z =1 Jn Iy 93, n n noon
n
E.
m 3 2
filsoln) € 2 N, +N /n N, +E. +N.. / /o
n= - s /p . : : /D X
n:Zn=1 ( Jn JJn )( Jn Jn JJn )
m 2
- (n)
gz% Znajn yx(n)
Where E
a, ¢ In
o
n (N, +N,. /p)(N. +E, 4N, /p)
3n 93, Jp 3, 93, (5.2)
Also let 2
Fly,L,2) = 1 k K




o\ L o gt S

v A s -,

n=1 J.n x(n)
where:
E. /N,
J
N. +E,
" I, Ean (5.3)
Then

P u(¥/x,L,2) = 6(y,L,Z)exp{s, (y;x,L,2)IF(y,L,Z)exp{a (y;x,L,2)}
The ML receiver uses the total metric:
m(y;x/L,2) = 2n Py (y/x,L,2)
= &n G(X’L’Z) + Al(}i;_’i’L’Z) + &n F(X’L’_Z_) + Ao(ls_’.(.’.L_vZ.)

But, since G(y,L,Z) and F(y,L,Z) do not depend on x, it suffices to

compute -
m(ysx/L,Z)

]
>4
ad
S~
=<
Ix
j—
IN
S
-+
(>

m ( )2
> [Zna5n+(l-2n)bjn y ’(‘n)

n=]

for each sequence x € C to determine the maximum likelihood sequence.

Again we use the Bhattacharyya bound to compute the performance of this

receiver. ~
Plx»>2) ¢ XX
where
- E{ /f Vel Lz ey ™A™ L2 dy§")...dy,§"’/x‘"’}
0o 0

=(1-p)Ei [.f\F(x‘")/x("ZJ,,.O)P(x‘")/x‘"Zjn.O) dy{“)...dy,ﬁ“)/x(“)}+
0o 0




: i ‘ + pE{/.. f\[P(x(n)/x(")J l)P(x(")/x("za »1) dy{")...dyé")/x(")i
0 o

-Substituting the corresponding conditional probabﬁities and integra-
ting over _y(") i=1,...,M i#x(") . if?(")

we are left with

0 - (1-9)5{[0 f \ﬁ‘jnz(i;n+95n) exp{-'zxz (;jn o )}dy] /m}

n

+pE [[ { p
" N. +NJJ /p (N +E. +NJJ /p
2
. )” ﬁ(n)}
Nj +EJn+NJjn/p

* n
(
N; (NS +E, (N iy Ip (N +E; N, /p)
f "t {(1 °) (N (+E /2)l ° (NJ +E) /ZZNJJn/o) / (n)}
n ﬂ

i
| ) i)
? | ) Z P(3){(1-p) +N‘JJ
l .

2R O S
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2
(s 4(1 + EJ./NJ.; . 4EJ.NJJ.(2NJ.2+ EJ. + Nys/p) .
3=1 (2 + Eg/N;) (ZNj + EJ.) (ZNj +E 4 ZNJj/p)

+ _,___i__
N 4E Ny N, + E,

3 2
j=1 (2+_1) (ZN +EJ) ‘pJ,_z_J:i__
2Nj + Ej

(5.5)
It can be easily shown that p=1 maximizes this bound over the interval
0 < p ¢ 1. Hence, continuous jamming is the worst case jamming in 1

this case also.

E
N 411 + —— N +NJ
D, = max D = }: P(3) . Jg a
O<pgl 1 ‘ : )
. J 2 + J
= Nj+NJj (5.6)
} 5.2 Soft Decision Receiver With No JSI

The jammer uses pulsed noise (duty cycle p) and nonuniform
distribution over the Slotted Channel.
We have shown before that when the background noise is neqli-

gible and the channel is uniform, a receiver using the simple total

LY

metric:

nyin) = 5y
BET & Y (5.7)

results in an unacceptable performance under low duty cycle jamming.

[P Y

'Having the choice between this receiver and the Hard Decision réceiver,

the latter should of course be preferred. This is also the case when

5
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~ § the channel is not uniform and the backgrounc noise not negligible.

; ! Still, as discussed above for the special case, the receiver, not being
able to detect the presence of the jammer for each chip time, may still
be able to make a reasonable measurement of p. In this case the ML |
metric can be used. We follow this idea below.

The conditional probability of the éhanne] is now

m
P Y/ %L) = rg Py ™ (™5 )
n=

wher
T e % ™5 7 )b, (2)
ML »n s0 L/XT el by Z,
| = Py (M 7x(M 5,7 20)(1-0) + Py M x(M 52,5100
L and ’
(n) (n)
: (i exp |- —k ; x(n)s
. () Nj +Ej Nj +Ej
n n) . Ay _ n n n ¥n
‘ PM(yk /X aJnsZn"o) = < . )
( 2 (n) y(ﬂ)
\ In In
2
(n)
. (oM ool Y  (n),
g 4 s
ol N. +E. +N,. /o N, +E. #N.. /p
21 p (1M 5 7 gy ) 0 I n
;r! k ; exp{- ————ﬁ———;— ;x(n)#k
t N, +N p N, +N.. /p
] . k n JJn Jn 'JJn
‘ Hence

m
P a(y/xL) = L[l[(l-p)PM(x(")/x("2J'n.Zn=0)+oPM(1(n)/x("2jn-Zn=1)] (5.8)

RCTNIINIIEEDS. v Rirm 1acr xS cotrs W urs 5 e oot 2N, 2 ISR b ¥ o
.




] 2 )
! | m Zy(?g) y(?z) M 2y'ﬁn) y'((n)
g = ]T(l-p) X exp{— X }ﬂ T expi- N f +
= n=1 Nj +Ej N. +E. J k=1 A in
: n “n n “n k#x("
(n) (n)2
2 (n) Y. (n)
e N +E W, /p P N. +E. +N,. /o )
n n Jn Jn JJn

3 | ('(')>

- n

a +p exp n GZ (x(“))
5 (N +NJ /p)(N +E +N‘J /o)

Vihere

2
N. M 2y(n) y(n)
(n), k I
G (z_ ) NJ +E '{;[1 —rj-EXD N

and )
# N, +N,. /o (n) (n)
# Jj M 2y y
| 62 ({2 e {- e
' N
n

To use the ML metric we take:

m(y;x/L) = #n P y(y/x,L) =




4

: )
n
- L zn[(l-p)el (rMexpd 20 b
v n Njn(Njn+Ejn)
(n)2
y E
2 ,.(n) x(n) In :

+ pGY

P, Jexp (n, /p)(N "y, /o) ] (5.10) }

n n n n i

Obviously, this can hardly be considered a practical metric for a
receiver. Nevertheless we proceed, trying to find P(x » g).
Since the receiver uses a ML metric, we can use the

Bhattacharyya bound:

b-t {IIVP M 7x M5 ey ™ g0y gy, dy(n)/(n)} i |

N o0 o0 _—
AT f .NPM(xm,x(n),j)pM(xm,g(n),,,-) ay(may(m
0 0

(5.11)
and
Cuc * gm0
It is difficult to proceed analytically to compute D, but, it can be

easily verified that

N (1 + /N )
1im D(p) =, P(J)
p+o j=1 (1 + EjIZNj)

which is exactly what we have with no jammer, i.e.,the jammer has no

effect at all. For p=1, we obtain




E.
Ap—

D(1) = J
(1 + m—%N—T)

Which is what we obtained before for the receiver having JSI. This is

what we would expect, since when p=1 both receivers are the same. i

However, for intermediate values of p, i.e., 0O<p<l, the performance
differs.
Note that for the same receiver over a uniform channel, with

no background noise, we have found that p=1 generates the worst case

jamming. The same result seems to hold in the general case also.

5.3 Hard Decision Receiver with JSI
The jammer uses pulsed noise (duty cycle p) and nonuniform -
distribution over the Siotted Channel. The inout and outout alphabets

’ of the channel are:

‘ = Y€ (1,2,... .M
3 . . th

and the conditional probability, when using the Jj~ sub-band ;
i J=1,....,N :
| l-¢; i ysx , I=0
3 €5
-1 o yix o, 2°0
% Ply/x,5.2) = (5.12)
3 l-eJJ vy oysx , Z=1

‘B Where
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......

OO S

( M-1
et T (%) ok b
1+ k(l + .ﬁ_'..wj__.

J /e
; ] (5.13)
MLy kel 1
3 D
k=1 El _
1+k LR (5.14)
The conditional probability of the channel is
m -
P (y/x,L,2) = ﬂI;I1 Py, /%grpeZ,)
Using the ML metric
‘ M(Yp3Xp /3002 = &n Ply,/x030.2,)
We obtain the Bhattacharyya bound g
Px» D) ¢ px58)
3 where
3 0= £{ L [Pl ma i Rsipgely) [ -
- - ( Y/ Xpsdpr £n )P p/ Xpod e bn) [ Xy
: ¥n L #x
n’ “n
TP X Py () SRR )
2 = P(J P 4 Pyx,j,ZPyx,jaZ
}- ) j___l z=o zn y n n

P

N ley)
= 2 P(j) {(l-p) [2 Elnjil + a-:—%ej:l+

J=o0

4
i
t
H




" b -
e

|
.‘

(1-e..
+ p[z -E—"l-ﬁ?ll +,’f,{-2fedj]} (5.15)

Here also p = 1 maximizes D

N (D M1-e, (D], ,
mx 0= 3 P(j)[z AR +,’,’,§2Ieaj(1)]
J:

o<pgl

o ch

np

(5.16)

5.4 Hard Decision Receiver with No JSI

The jammer uses pulsed noise (duty cycle p) and nonuniform dist-
ribution over the “Slotted Channel".
The input and output alphabets are
X =Y €{1,2,...,M}

th

The conditional probability function, when using the j~ subchannel,

J=1,...,N, is:
l-ej(l-p)-sdjp A

P(y/x,3) =
e;(1-p)te 50 (5.17)
M-1 H y#x

where

"21 (n 1) yk#l 1
1+k(1 + Ej/Nj)

eyylo) & "E:: ('1 1) (-1)k#1 1

e
w1 + s
( Nj*Nys/e )

The metric we use is again the ML metric :
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R &t

[3 e e
e

+ 7
¥ L
A e e

o

m(y;x/L) = &n P(y/x,L)

Hence, we have the Bhattacharyya bound

A
Plx» £) ¢ M52

Where
0T Ei?‘P(yn/xn’jn)P(yn/‘;n’jn)'/x(n)} ; xnﬁn
n
}'f‘. (1) T yP( W(y/R .3)
= P(J y/x ,3)P(y/x ,i) =
N [e.(1-p)+e:01[1- €.(1~p)-€,.p] '
P> P(j)[z\fa A o 9j
J=1 -
M-2 ! .
*M4€ﬂ“””u¢] (5.18)
But .
0("'2:1 {ej(l'p)+€ij} = lej(l-p)‘..s\]jp!p:I = eJJ(l)

It is therefore clear that
N "e (1-€,.)
. Jj Jj M-2
D, = max D = E: P(J)[Z — + o€ ]

€33 2 er(l)

where

Note, that if the receiver had no Channel State Information then

upy

;Z P(3)[1-¢4(1-p)-e 0]

€. (1-p)+e,.p
M'F;’T s sz(j)[—‘l—ng—l—i‘]— ioyfx

1-p y=x

P(y/x) =

(5.20)

o o




CEET e
o e s

E |
E l . and using the ML metric, we would have obtained :
- (1- M-2 5.21)
b = 2Bl + pEo (5.21)
when the bar is used to discriminate between the tuwo receivers. Since
D(P) is convex M, it is clear that D 3 D.
{
b )
&




CHAPTER VI
SIMPLE APPLICATIONS OF THE GENERAL BOUND

6. As shown in Chapter III , the cutoff rate for a coded bit in

the worst case jamming environment is given by
Ry = 1092[1+(M-1)ch] bits/channel use (6.1)

It is now a trivial matter to derive Ro for all the situations analyzed
above. In particular, we have derived ch for the Soft Decision receiver
with JSI over a uniform channel. Since p =1 is the worst case
jamming, we now let NO represent the total uniform noise spectral den-

sity, which includes the background noise and the effect of the jamming.

E
4[1 + WC—]
- 0

ch is in this case given by

2+ &
NO

‘

(6.2)
Using eauations 6.1, 6.2,we have computed Ro for M = 2,4,8,16,32 as a

function of Eb/NO. These results are shown in figure 9,

Since the Soft Decision receiver having knowledge of p only,
achieves the same performance for p = 1, as the receiver having JSI.
The same figure shows also the cutoff rate of the two Hard Decision
receivers considered above. For both receivers over the uniform channel

ch is given by

e(1-¢) M
2T YW

€

) -2
Py = 1

(6.3)




amh e e e, —l e

where :

M-1 10
e= 3 ‘Mkl) (-1)k1 1
k=1 1+ (14E /N )
(6.4)
In general, chis a function of Ec’ d, N & P, but for a uniform

channel ch can be writter as a function of EC/N0 only. To emphasize

this fact we write :

E
ol
Ny
and: :
E
R =R ._E.)
0 0( No (6.5)

6.1 MFSK

Conventional MFSK modulation has the symbol error probability

bound 1
Ps < 7 (M-1)0 (6.6)
and bit error bound
_ M2
Py = BT Ps (6.7)
Now, since for MFSK
E =kE .,
c b (6.8)
where
K= IogzM
) (6.9)
we have for the uniform channel
KE
Py 2"‘20( N—E)
() (6.10)

Hence, the bound of the Soft Decision receiver is in this case
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et

L k2 4(1+be/N )
b < (2+KE /N )7

o 4 e
e o i, e ek o 3 2 M

¢ (IHKE /)
(24KE, /N ) . (6.11)

whereas the exact bit error probability is

N2
Py = M-T Ps
oK.
_ &1 E ( ) k1
Tk & L+ (1+KE, /N, )
(6.12)

Both curves are shown in figure 12 for k=1 .

6.2 m Diversity MFSK

For m diversity MFSK we have the symbol error bound :

! 21- (M-1) D‘ ) (6.13)
. where e . 5
¢ mbb (6.18)
, Hence .
= M
X Pb W1 P
o | Mo ¢
3 $‘4ﬁ) (6.15)
,.‘] m \
4 = M|)(EE£) :
| 4 " \nmN, (6.16) :.

For the Soft Decision receiver we then obtain
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KE. 1™
b

Ph< g

We can compare this result with tﬁe exact bit error probability obta-

ined by a ML receiver, which for M=2 is known to be [4] :

L :z: (4 and (6.18)
where
o1
2+ ﬁﬁ_‘; (6.19)

Figure 12 shows both curves for several values of m. Given Eb/N0 we
can find\thé optimal value of m and the resultant Py bound from equa-
tion 6.17 .Figure 13 shows the Pb bound as a function of Eb/N0 using
optimal diversity for M=2,4,8,16,32. The fiqure shows also the value
of the optimal m used to derive each calculated point. Since m can
only assume integer values, the smooth curves shown are only approxi-
mations to the actual results. As well known (4}, for M=2 the opti-
mal diversity is given by :

b

N

W=

mopt =

For the same value of Eb/No but higher M, m ot 15 also higher.

(]
Even when moderate values of signal-to-noise-ratio ( say

Eb/No = 20 dB ) are expected, the optimum value of m may well be

unrealistically high. A variety of "practical" reasons may preclude

KE, \2
(%+ ﬁﬁ£> :
(\ (6.17)
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the use of high m values. If, for instance, the information rate is
such that the "instantaneous" bandwidth of the transmitted chip is
nearly equal to the "coherence bandwidth" of the HF channe1,;a substan-

: tial degradation in performance, not accounted for in our analysis, may

oy

- appear, when the bit time interval is chopped to shorter chips. More-

. over, changing the chip rate so as to follow changes in Eb/No is
usually undesirable in practice. In such cases it seems reasonable to
choose low values of m, so that optimal performance will be achieved 4
when the signa] is weak. Figure 13d may be of interest in such a siFua- {
tion. In this Figure we compare the performance of systems using
M=2,4,8,16,32, for m=K,.i.e., the chip time‘Tc is equal to Tb for al]. . ;
curves. It can be seen that under such a constraint, high M systems

have a profound advantage.

T

6.3 Orthogonal Convolutional Codes

Conventional MFSK with m diversity is merely a block code con-

Jaining M code words of blockiength m. We can consider more general *
codes using M-ary alphabets. An orthogonal convolutional code, for

instance, generates one 2K=M-ary symbols per bit. When used with m

A diversity, each symbol is "chopped" into m chips and the bit error bound i
L3

-;f * is [3]: . ‘ K

= 4 b

i “‘Tm )

‘ P, ¢ — 0

1 . b ¥ E mv2 ;
2 : - 2 1-20(-—11 (6.20) :
4 - mNo

“¢ 6.4 Example
Consider a Soft Decision receiver with JSI and a uniform channel.

3_4 The information rates are :
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= 2400 bits/sec.

o

=
~
Ll

75 bits/sec.

and suppose that at the higher information rate Eb/No = IQ;dB.

a. For a binary receiver with no diveréity, i.e., M=2, K=ﬁ=1, we

obtain from equations 6.2 and 6.6 :

n( )—41”98 = 0.934 107}
(2+39.8)

and 1 -1
Pb < 2-0 = 0.467 10
The convolutional code from 6.3 yields in this case:

Py < 0.706 1071

Recalling that diversity may help, we see in figure 13 that for this
binary receiver at Eb/No = 16 dB optimum diversity is m=13. Using
this value we obtain:

"

g_[4(1+39.8/13)]13 - 0.138 1072
(2439.8/13)°

Sz

Pp €

The chip rate is then :
= RHm = 2400 x 13 = 31,200 chips/second.

If 2400 chips/sec. is the highest permissible chip rate, we can try to
use a higher M. For M=2K=8 and m=K=3, the chip rate remains

R =2400 chips/sec. and E

Hence: : 3 -2
0 09347 = 0.162 10

-~

Which is almost as §ood as optimal diversity for M=2,

f
e




The orthogonal convolutional code with M=8, m=3 yields in this case:

E
o(mg )= 4(1+39.8/3)  ¢_2448
o (2+39.8/3)

S b Ty

s P g 0.168 107 -

b. For the low data rate, RL= 75 bits/sec. :

E 1
(_Ngl - 2_%'9. (ﬂ‘l,H = 32 x 38.9 = 1.244 10°
olL 0

Hence, for the binary receiver with no diversity we obtain from equa-

tions 6.2& 6.10 -3
D = 3.208 10

and -3
Pb g 0.1604 10

There is no need to use high m in this case. Suppose we take m=4.

Then:
| Py

and the chip rate:
2 ' o Rc = mRL = 4 x 75 = 300 chips/sec.

£ 0.1317 1078

v
b




CHAPTER VII
OPTIMAL HOPPING STRATEGY OVER A NONUNIFORM CHANNEL

[y

7.1 Optimal Hopping Strategy For an Uncoded‘Communicaf#oﬁ‘System

We now derive the optimum hopping strategy for an uncoded CS
threatened by a noise jammer. We assume a *Slotted Channel" as shown in
figure 1. The noise density Nj is assumed equal for all sub-

channels: N.=N_ ; j=1,...,L .The mean received energy per chip of the

i o
MFSK signal is defined by the vector :

E = [E,E...00E)
, where . ' .
) Ej = oij s j=1,...,L (7.1)
i { Here Tb is the chip duration and o; is the mean received power at
’ the jth sub-channel. The jammer divides his power among the L sub-

channels according to :

3 ‘ _\]_ = [Jl’ ngo...,JL]
g |
3 where J, 1is the jammer power allocated to the it sub-channel.
3 And L
3 S, =
3 2%

_.,4
' R

The contribution of the jammer to the noise power density at the jth

, ot

o \‘~ " <‘v

N
| 4
[PPSR PGNP

sub-band, denoted NJj is

95 7 955 (7.2)

We also assume that:

To combat jamming the CS operator is free to "hop" among the sub-

channels. When hopping P(j) is the probability that the ;jth sub-
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channel will be used (or the fraction of time sub-channel j is used).
The jammer observes P , but don't know the "hopping" plan" -a random
sequence which is adjusted for the desired P. Based on thé information

available to him, the jammer chooses J , subject to:

L

2 d. =1
=1 9
v

so as to maximize the probability of error of the CS.
For an MFSK noncoherent receiver over a Rayleigh fading

channel, the probability of error is given by (See App.T1)

M-1
S (M €>(_1)k+1 1
SR

E.
1*41*ﬂ7%4
0 Jj (7.3)

Suppose now that the jammer is very weak, so that even if the jammer

3 J=1,...,L

uses all it's power to jam subchannel 1, it would still have lower

probability of error than sub-channel 2,...,L. Clearly, in this case
the CS operator chooses:

p =11,0,0,...,0].
i.e., no hopping. Only sub-channel 1 is used.

Now let Jtl be defined by :

LU
. Notc19e1 0
r .
J e EQ El -1
tl Cl E
2 (7.4)

Then, Jtl is the jamming power that, when used to jam sub-channel 1,

makes it exactly as bad as sub-channel 2 (unjammed).

It is intuitively clear that for J > Jtl » the CS operator- should hoo




j
3
.
]
3
j

and * * x *

between sub-channel 1 and other sub-channels.
We now give a formal definition of the problem : Let

P = (p{1),Pl2),.....P0L0

[

3 = [3)50p,. 00

be the minimax solution, i.e.:

* * ’
J  maximizes Pb(_g »J) over all possible J subject to :
L
J; =4d
F
where
* *
PP ad) = 2 Plide

L * M"l

- 3 3 -k
J= =

1+k]1 N—Jj—

' [+ J (7.5)

OJJ

and f_* is the probability vector which minimizes the maximum Pb(f'i)
that the jammer can achieve knowing P.

Or, formally

* _ _l *

J = ax Pp (P ,3) (7.6)
and -

* -1

P = min = max P_(P,J)

P > LR (1.7)

* *
We want to find P and J

Using the Lagrange multiplier >‘1 for the constraint

L
Y P(j) =
=1

e TP D AN T 5 S




19

*
— e o -

L M-1 L
@2y = 3 e 3 ()enkt— als P(j)-l]
j=1 k=1 £, | 1=
1+k |1+ N—T’ R
o J3J -

* * =
i Then, the minimax point (P ,J ) must satisfy the conditions ( (3}, °

~ Appendix 3B.1 - KUHN - TUCKER conditions) :

aF (P, J )
_5'5('3')__— 3 all j such that sz)>0
p()=pli) :
L
P
j=1 (7.7)
Also let
M-1 k+1 L
Fo(Pd,) = Ewn ( )en® L., z%-]
o ]
No*s J (7.8)
Then, the minimax point should also satisfy the conditions:
3, (P ,3.0,) ;
T « =0 3 all j such that P(j)>0
1 j .20,
| 3
‘ . . 1
g Jj = 0 3 a1l j such that P(j)=0
. CoL
PR
l ) From condition I we obtain : (7.9)
S M-1
) M-1 k+1
b Z;:l( K )('1) 1 - +x1 =0 ; all j such that sz)>0
¢ ey
. o
! © This implies that
- —J—; € 5 all § such that P(§)>0°
L Notcsd
| ‘ 33
. ~
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This implies that at the minimax solution the probability of error P

. bj
of all the active sub-channels must be equal. It also implies that the

number of active sub-channels depends on the jammer power J. It was men-
‘tioned above that for J>Jt1 » more than a single sub-channei is used,

while for J‘Jtl only sub-channel 1 is used. Similarly we define Jtn .

n<L to be the highest jammer power for which only n sub-channels are
i

used for hopping. Also,let J be the jammer power allocated to sub-

tn
channel i when J= Jtn
Hence: n
PN
J =
tn 3 tr
Where
El = E2 = - En = En+1
1 2 oooooo “
No+C1Jtn No+c2‘]tn No+antn No
Then : . N Ei
Iy = ] -1 3 i=1,2,...,n
n C. E
1 n+l
Hence :
N n E. n
-0 2 2L _N 3 1 3 n<L
3. =d Eq 116 °4=1 G
tn
® s npL (7.10)

Therefore, knowing the jammer power, the number N of sub-channels, the
CS should use for Hopping, is to be found from:

Je N-1 €9 € ey (7.11)

We have seen that the minimax solution corresponds to :
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1,....,N
} ] J=l" ‘N -:
L
°41
1
1
C. N
) - C_?- s J=1:- 9N
J
3 N
. (7.12)
To find P we use condition 1II :
let ‘
e j <
XJ(JJ) 1+ W A j=1,...,N

Hence: 4
yap e —b -is€
2 No * €39;
:;J . Then
{ ot

k=1 (1+kx

aF(P ,3,1,) M-1 dx.
_i;:‘]_j._Z_ =pli) T (";1)(-1)"*1..1;&)123% a,
J

i=1,2,... N




Where
. c.E

A Can o
P U

"Hence, condition II implies:

. .
P(jlc. 2 M-1
_(_J__l € 2 (M 1)(.1)k+1 k F+dy =03 §=1,...,N
E. (1 + k(1+€)]
J
Or
Pfj)C-
—_—3 =C 3 . j=1,...,N
.Ej
‘ But .
N
Y PG =1
j=1
Hence
N E.
| ¢ 2=
=1 7j
E./c.
1 i s §=1,0..,N

N Ej

pls) = 2 e
=17

0 3 PN (7.13)

5 R
b T o .

A
o
e

Extension to Coded Systems

7.2

N

Our aim now is to show that the solution to the original minimax

Nk omr

problem, which delt with the probability of error of a channel used

]
| with no coding, remains a valid minimax solution for D(P),-which is

p the Hard Decision bound parameter:
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PENSIINRSE P

N (1-e)e.
D(P) = Elp(j)[z Rt e ‘J‘]

‘Where Ej is the bit error probability of the jth sub-channei. Recall

= from 7.1 that if gf‘is the minimax solution for P, where :

N
Fb = 2 P(J)EJ(JJ)

{ : . J=1

* 3 *
and £ = (e;,ez,...,eN) is the associated probability of error of the

channel, which correspond to the worst case jamming power distribution:

* * * *

3= (3]s dpseensdy)

then:

P = (), Pl2), ....P(N)]

is the solution of the following system of N + 1 equations:

, . d(s'l)
i P(j) . + 2 . * =0 3 j=l,...,N
! Jj Jj = JJ
N
2P =1
J=1
*
"i and J is chosen such that :
,_, ) * * *
’21 el(Jl) = ez(Jz) = .. = e“(Jn)
- :
:'4

L]
C

N
.121 %

Similarly, since




-

Rkl

i e e
HARG

I -

N (l-e.
O(P.) = 3 P(j)[z‘/i,(,_l%) + k
J:

-is a convex N function of J, the minimax solution

to be found from:

- €s(1-€.)
P(3) ag;[zJ__M__lj ik L %:—%-cj]-ik .
J

-2
1 Cj]

P for: D(P,d) is’

« =033=1,..,N

J
N -
2 P(3) =1
J=1
where i* is the unique vector such that :
* * * &
El(dl) = Ez(dz) Teee™ EN(JN) =€
and
N
33 =
=17
but
a [, [elte) | w2
dJ. M-1 M-1 75 *
J J. = J,
J J
- d e;(1-€;) M-2 de
ae—{z 1t TS H'J’;L .
Jj = 'Jj
d e.(1-¢;) M-2 de,
. azf[z el ¢ Kt e s | .
J €;= € J JI= Jj




e A m

de .
Q(E) la‘JJ—
J

J. =%
P79 - ,
. -where : ? ‘
N el d ,ej(l'ej) M-2 ) .
- 0e) = 1ge; [2 T T AT i
g j €5 = €

Hence, the equations that we must solve have the form:

- dej
aIP() | g R R S S
i = J,
it 4
N
2, P =1
J=1
or:
de .
= AL .
P(3) | o~ togrey 20 5 el 1
Jl 39, =4
j
N —
2 PG =1

Comparing equation 7.14 to equation 7.9 , it is clear that both
have the same solution, i.e., E(j) = P(j) (and only the value of 2 is
, different - which is of no consequence).
It can be similarly shown that the minimax solution, found above,

}‘1 _ applies also to the Soft Decision bound:
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CHAPTER VIII
MULTI TONE JAMMING

- 8.1 Introductory Discussion and Definitions

In this chapter we consider FH / BFSK signalling in Rayleigh

fading channels which are subject to multi-tone jamming. This kind of
jamming differs from noise jamming in several important characteristics

some of which we discuss briefly below.

It is intuitively clear that a multi-tone jammer is most

effective when it hits no more than one tone in each M ione sub-band.
In a way, hitting two tones in the same sub-band constitutes a waste of ;

jamming power. Consequently, given the total spread spectrum bandwidth

L e ———

W, the available number of M tone sub-bands, and the total number of
;, tones the jammer must use in order to "cover" a certain fraction of
these sub-bands, is inversely proportional to M . Hence, the power of
each tone the jammer transmits is proportional to M, i.e. larger M

implies increased jammer effectivity. Therefore, FH / BFSK yields

better performance under multi-tone jamming than FH / MFSK signalling

. binary case only.

- In the noise jamming case we assumed that under favorable

229 ¢ 2t o ey T ooon eV sireety

Ti for M> 2. In view of this fact the following analysis deals with the
!
i

conditions the receiver may be able¢ to detect the presence or absence

of the jammer's emissfon in the currently used sub-band for each chip

time interval. Under multi-tone jamming, however, both the f}iendly
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transmitter and the jammer may hit the same tone position, and theref-

ore, the receiver cannot always (or nearly so) detect the presence of

the jammer. The concept of JSI is therefore unrealistic when multi -

:  tone jammer is considered. In spite of the above, when N-jlhe number

- of active sub-bands, is moderately large, the receiver may still be
able to measure p and therefore, a receiver having knowledge of p is
included in the following study.

Recall that in the noise jamming case we have used the random

th chip signal was

variable Zn s N=1,...,m , to specify whether the n
jammed or not. In the following, Zn is still used in the same manner, ;

but in addition we introduce the binary random variable j" defined as i

follows:
o, the jammer hits W during the nth chip time
j =
n 1, the jammer hits Wy during the nth chip time
f n=l,....,m
p we also assume that: ]
f J P.(0) =P.(1) =1/2 ; n=l1,...,m
: ‘ In In

and that the receiver knows this fact. 1

T;: In this work we assume that both, the signal and the multi -

' tone jammer are subject to Rayleigh fading. Assuming that the 2 M sub-
‘;J band was used during the nth chip time, the received jammer signal
;1 _ (following the dehopper) is of the form:
F;.4 ; B, cos{w.t + 86 ) i(E[O 1] n=1 m
' » 3 ; R'n i n ’ ’ ’ ey
J.; where: b bz
. sz(b) =y expy - —5— 3 “b>o

20
Jzn

E o}
P n Jzn




and 1
- 2r , 0ge<2m
Pese) - n=1,...,m
0 , elsewhere

This implies that E [82 ] - zo?m -
n

- L
- n
where 02. - the mean received jammer power at the jth sub-band is
JJ
given by:
2
. = J.a,
%5 = 5% (8.1)
For convenience we also define:
- 2
EJJ’ °Jch
= C.
95 (8.2)
We now turn our attention to specific receivers.
8.2 Performance Analysis Of Specific Receivers
{ 8.2.1 Hard decision FH /BFSK receiver under pulsed/partial band
f& ‘ multi-tone jamming.

We begin with the uniform channel. The input and output alph-

e - abets are:

x =Y€ [0,1]

The conditional probability of y given x is:

m

- Paly/x) = ]'l1 Ply,/x,)
n=

RPIE

.
.
) . RERS g "
—aa. = R N

}

But when no jammer is present: .
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e
‘. - PR
I}
i
1-p oYX
- - 2 n’n
P(yn/xnxzn-o) -
: P2 H y")‘xn
Where:
P, = —
2+ tc/No
while under jamming :
1-P 5 ™% p
1-P, ; yn=xn# jn
Plyp /% Zy=153,)"
Py NN ¢ SN
|
Py sy Ay
', Where :
p. 1
E =
Py ——
‘] EC EJ.
= 2+ —— +
W, e
2 -
i : 1+

(8.4)




s o i

/ (See appendix Il for the derivation of P & Po )
Pictorially:

1-p 1-p 1-p,

_ 2050 0 lo5o0 o 0
L X y x y

1 > 1 1 1

l-po l-p1

Z =0 Jj=0 j=1

Hence:

P(y,/x,) = (1-p)P(y,/x,,2,=0) + oP(y /x.Z =1)

= (1-p)Ply, /%42, =0)s0[Ply, /,2,=1,3,70)/2 +P(y,/%,,2,=1,3,1)/2)

n""n*“n n"*n*‘n
and:
po+p1
(1-0)(1—P2) + p(1- —— ) 3 y=x
Plyn/x,) =
PP
(1-p)p, + p(—%—l) s y# x
¢ (8.5)
where : 3
v + 2 + Nﬂ_
4 PoP1 1 0P
| 2 7 _
S E )
. 2 + +
3 e
J..;
.?1
;-l = Without JSI the receiver uses the metric :
. ‘ m(ypix,) = -Wly,ix,)
(8.6)
which is a ML metric (can be written in the form : N
: ‘ m(yn;xn) = aznP(yn/xn) +b )
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Note that the receiver does not need to know p in order to use this

metric. Hence, the performance is bounded by the Bhattacharyya bound:

0 min 0(x . A) & TYPL/TIPly/x) 5 Rk,
. 0<A Yn -
? - |
¢ |
2 [0y Re 1 &€y /g 1o, P 2E N “
= -p) - 5 ————— Yy ]
2+ E E EJ E EC E, 3
R 2+ NE + 35 2+ NE 2+ &+ 1=
() o of () o of
Ec EJ )
= 1+ == +
1+E_/N N " 2N o 1+E /2N o
=2 1-p) -c 0 4 2 (4 lfg + J g o
2+E /N EE X EJ ot EE. 2+E£.+ EQ_
No  NoP No No NP
EE
& 5y € d

( The value of p which maximizes D is again p =1. Hence:

£t E,
6 52+ 20+ 280
D = maxD = 2 0 ° °

wC
o0<p<1 E E
2+ £ ._‘J_

Yo N (8.7)

This can be written in a concise form by letting:

v cag Lt e ; N
- . R - g
B .- okt o Jh Y
AtA e e . .

-
I ) P ey ey

B 7 anh it SO e e



i

i

MU ]

-
AR e -

/ . e R A 1l &

Then:

Dyc = 3feyll-ey)

and N W(X;_'X:)
P(x + X) ¢ D

AN B

Since €y dependsonly on the ratio EC/N0 and EJ/No » 1t is convenient

to define:

a
Y. = EC/N0
and a
9= EJ/EC
Then:
1+vg/2
CM(‘yc’Q) = ___C____
2 + ¥ (14g) (8.8)

When Ec/No>>1 and EJ/N°>>1 . eM(Wc,g) reduces to:

€n ¥ Nang (8.9)

A trivial extension of this derivation yields a similar bound

for the Slotted Channel:

N
D, = ;éap(J)z\/EMJ(l_EMj)

where: (8.10)
. 1+ EJ/sz
MJ E. E..
2+ J + _J_J.
N, " N,
3o (8.11)
8.2.2 Soft Decision receiver having knowledge of p over 2 neglig-

ible noise Slotted Channel under pulsed / partial band multi=tone




rs ~ —

Cadle . -‘ o
e e . - e s

( jammer.
The input alphabet is : x € {0,1) ,

The output alphabet is:

LT I

: y(M - (y((,"z y{"))

kth

H n=1,.§z,m

= Where y£") is the detector output at the nth chip time.
The conditional probability of y given x and the particular hopping

sequence L is:

m
Pom(¥/X,L) = ﬂl Pz(x("’/x("),nn)
where:

1
Py x(M e ) - ng:o Pz(x(")/x(").zn.k)i’z’(lk)

-, (M 7x(M 201, (0) + poly ™ x(M e 1)p,00)
n n
=102,y (M7x{M 0,0y + 0P, (y(Mx(M a1

(100, Mrx M g 0) s

! v g[pz(l(n),x(n),,Ln,l’jnq(n)) . pz(x(n),xm).ln’l,jnfx(n))l

But:
u pz(x(n)/x(n),zn,o) = P(y:?%)/x(n),gn,o)P(yé?g)/x(n),gn,O)

(n) (n)
2
hm { Y ()

(n)
| j ' ; i slrztn)
1;‘ n n
{
|
i

; Where

_ 0 ;3 x=1
X =




-
‘ ' D et 2 m——

e e e A ames

and:

P (MMl 1,5 =x(M)) - P(yi?z)/x(").l 1,3 -x("))

f . p(y(r(‘) /X(n),ﬁnyl.jn‘-'x(n)) -

2yt y i oMY
n n
Whereas:

Pty Mrx(™ e 1,5 =50y - P(y(?l)/x(").ln 1,5,=%(M).
X

.P(y;?z)/x(“).zn 1,3 “x("))

; 2 2
i (n) (n) (n) (n)
3 2 () Y ()] #en) Yo(n)
’ B B T
; J . 2, a1 N\

To use the ML metric we take:

e ™ixM sy = anp (M) g ) |

1

“?} o = 1n{(1_p)p2(¥ﬁ")/x("),zn,O) ' | |
1
i

% [Pz(x(")/x("),zn,1,jn=x(“)) + pz(l(n)/x(n)’zn’l’jn._.;(ﬂ))]}

(8.12)

The Bhattacharyya bound parameter D is then given by: -




I N

o I [ \ﬁ, ™ 3o,y MM g dy(n>¢,y(n)/ (n)}
4n)

«(n)f (n)

N v
- 20 [\/Qx‘“’/o,mz(y_‘“)n.j) ay{May{")
1(n)

Substituting Pz(xﬁ")/o,j) and Pz(x‘")ll,j) , the last expression

reduces to:

2,(m) () (n)"’
N
= 2 (J)[f 0 'yl exp _2_.(_1. +_1__)§.
=1 2 \E,  Eyy

N E+E) /o
2 P(3) ‘/——L y exp{ L idy
j=1 E EJJ 2 J JJ

N
.o 2E EJ.
j=1 (E + EJJ/D)

(8.13)
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N
N
Hence:
. N 2€.E
D, Smax 0 =0(1) = ) p(3) —LU
o<pg1 j=1 (Ej + EJj) ;
N _ :
=1 (1 + EJJ-/EJ-) (8.14)

The worst case jamming is in this case also p=1. For the uniform

channel D . reduces to:
we 2E 4/E
"+ EyE) (8.15)

The last relation is shown graphically in figure 14. It shows the

g S sanpuscie=g

apparently "strange" fact that when the background noise is very low,
a ML receiver performs better when the jammer is stronger than the
signal,than when the two are equal.In fact, the worst case jamming is

obtained when EJ/EC = 1.

ol
WC
EC
N .5
P . .
.1 - .3 .5 1 2 3 4 10 EJ/Ec

Figure 14, ch For the Soft Decision Receiver

-~

Under Multi-Tone Jamming
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. The input alphabet is:

8.2.3 Soft Decision receiver having knowledge of p over the

uniform channel under pulsed / partial band multi-tone jamming.

x € {0,1)

(n) ,(n)

The output alphabet is:
Put a7p y - (yo 'a¥1' ) 3 nel,....m

The conditional probability of y given x is:

m
sz(lli) = nl:ll PZ(l(n)/x(n))

— |

here: ‘
T ™) < (1p)py(y MM 2 20 + opy (M (™2 1)

But:
Pz(x(n)/x(n) ’Zn=0) =

No N0

(n) (m? 5, (n) (n)?

2 2

Y (n) { Y (n) } Y- (n) expi_’,;(n)}
C

and:
P M x(M 2 1) -

= Lo,y ™A™ 15 =My 4 Lo y(Myn(m 15 =5

2y

(n)
«n)

No

+ Ec + EJ/p

exp{-

2
(n)
Y (n)

(n)
=(n)

X

No * EC + EJ/p

:

No

exp{ -

No

(n)?
y;(“)} N 4




i
gvj { To use the ML metric we take:
S m(y(M;x (M) = znpz(x(n)/x(n))

“tn i (1-0)p,(y (MM 2 <0) + -

: + -:—[Pz(l(p)/x(n)rzn-"l.jn=x("))+P2(1(n)/x("),zn=1.jn-=§("))u

8.16
The Bhattacharyya bound parameter D is then given by: ( )

- [\ﬁ,z(l(n),;(n))pz(l(n),x(n),'dygn)dygn) gln) ()
(n)
Y

| . - [\t ™ 0y ™71y ay{May, ™
| Y

; (n)
E _ Where:
P (y{™/0) = p,(y{m,y{M/0)
F 2 2
: (n) (n) (n) (n)
X 2y 2y y
| - (1p) 2 exp{ - 0 L_exp{-1- b+
{ N°+Ec N°+Ec Ny No
: 2
(n) (n) (n) (n)
2 y 2y y
' %p ———y.°~exp {- ) } 1 exp {- 1 E '
No"EcﬁJ/p NotEctEy/e) N, No

Vil
+*
"
-4
+
rm

o . Y L@k
oy T ¥ A o ) AL

Bl |
LR e e e ol

,
2y(n) y(MY oM yim

- 1 Yo exp -9 1 gpd.

: o "¢ No*Ec ) No*Ey/e No*Ey/e

Py /1) = py(y{MiyiM ) - Pz(y{").y,g")/or)

-~




This is as far as we can go analytically. It is easy to show, however,

that
4(1+Ec/No)

)2

gimD =
p>0 (2+EC/NO

R I

= which is what we obtain-when there is no jamming. Again it seems that
p=1 is the worst case jamming.
Since the ML metric for this receiver requires knowledge of

p, and is difficult to implement even when p is known, we try another

approach. It follows from our result on noise jamming, that when no 3
jammer is present, the total ML metric of aSoft Decision receiver is:

oy) = (n)2
m(y;x) 2: Y (n)

n=1 x (8.17)

which is jast a sum of squares of the energy detector outputs corres-
ponding to the sequence x . We want now to find the performance of a
receiver using this metric under pulsed / partial band jamming. Using

4 the Chernoff bound we obtain:

. oy < ( ) - ( )
.. P(x*X) ¢ E[expi n§=:1 Ay'Y () y (n))} /]

K] - (M2 (n) (n)
- Be[eelrot )
!
i

m

- e n ( (n) "‘(n) x)

n=1

where:

D(x("):?(") ) = E [exp ix(y(?) (n) } /&( T]
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2 2 ’
.—.E[E[expi)\(yi’(‘z) - y,((?')‘))l /X(n)’zn’j"]/x(n)J

X
2 2 -
- . BN
- E[E[expzxyg"),)l/x(",),zn.Jr;|E[expi-xy:'(")‘)g/x(n),zn,Jn]/x n)]
= 2 2
. . . ( ( :
= EjPzn’jr(,z,J)E[expixyf‘;(‘r)‘)}/x("zz,,]]E[exp.l-xyx?a)l_/ nzz,J]
But, for z2(n).y(n) .
1
3 =()
TN, z
m?{ £.(n), . 1 1 so(n)
Elexp { Ay (n) X' 3Z,Jl = s z=1, j=x
X 1-AN,
\‘ —1 . oz, J'=>'<(n)
1-A(N°+EJ/p)
0< X < 1
N°+EJ/p
and:
__L___ s z=0
1+x(No+Ec)
aymZl oy, o] 1 P
E[QXPE X.Yx(n)i/x 32’3] 1+)‘(NO+EC+EJ/D) y I s J&X
—r s oz, 3
1+A(N°+Ec)
0< A
Hence, for ?(")f x("), D(x("z 'x‘(");x) = =
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‘ —_

= l-p + 0/2 +
(1-ANO)[1+x(No+ECﬂ (1-%N6)[1+X(NO+EC+EJ/9)]

: + 0/2
: [1-2 (NG 7o) [ 140 (N E )]

p- ) - 0 < A<

IR I

2o(r)
- Note that for any allowable value of A,the first term, namely:
1-p

(1-an ) [ 1 (v +E )]
approaches 1 as p +0, and therefore:
min D(A) i N |

0<A< 1
N°+EJ/p

We conclude that the bound of the Soft Decision receiver using this
metric is worthless. We expect that in general the receiver using this
metric has poor performance under a low duty cycle jammer.Recall that

the same result was derived above for the noise jamming case.

8.3 Ro Evaluation and Simple Applications

Having derived the parameter D for the multi-tone jamming case

- we can now compute Ro from the equation :

R, = 1-%0g, 14D, (¥,9) (8.19)




8.3.1 BFSK:As for the noise jamming case, the bound on Pb ~ the bit

error probability is:

[ SR
n
.
.
LA I

(8.20) -

where: y 2

For the special case of a Soft Decision receiver over a neqligible
noise uniform channel, the bound takes the form:

EJ/Eb

§ ————
b (1+E,/E,)° -

P

=_9_2
. (1+9) (8.21)

We want to compare this bound to the exact performance of a ML receiver
using the same channel. In this case the operation of the ML receiver
' can be given a very simple interpretation.
. Only two events may occur with nonzero probability :
a. One detector output is zero and the other is nonzero.
b. Both detector outputs are nonzero and one is larger than the
other.
When a occurs the ML receiver chooses the nonzero output. When

b occurs and Ec > EJ » the receiver chooses the largest output,

otherwise the receiver chooses the smaller output. The exact error

probability of this receiver is therefore (See Appendix II ):

s
| E
|

-




The ratio "bound-to-exact" is then:

- 2
Ty ¢ 97!
r =
2
T > 9¢d
[ - o

which is at most 2.

8.3.2 m Diversity BFSK:

( When m diversity is used: o m !
1{ {1 B Bo/m '
P. < 5|D[=z —;
t b7 mNE/m . 1
o “b (8.22) |
i
{
m F ]
_ Lg%, ) i
‘?’ m_'ag i
{ (8.23) -

Using the Hard Decision receiver bound over a uniform channel:

0= 2/€M(1-EM) 2‘

and |
i 1 m :
g Pp < 7(2V€M(1'€M) (8.24) ;
+: f | \ X
:;@ _ where : . 139 .)- 1+ng/2m ,
B - M 2+, (1+g)/m (8.25)
B

Figure 15 shows this bound as a function of ¥ for several values of the
N !

parameter g,when for each point the optimum value of m was uled.

o
i
|
!
{
]
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8.4 Optimum Hopping Strategy over a Nonuniform Channel

We now derive the optimum hopping strategy for an uncoded CS
- threatened by a multi-tone jammer. As in the noise jamming cé%e, we
i assume a Slotted Channel as shown in figure 1 . The noise de;sity Nj
) is equal for all sub-channels: Nj=N°, j=1,...,L. The mean received

Jammer energy per chip of/the BFSK signal is defined by the vector

Ed = (EJI’EJZ’ ...... ,EJL)
where . 2 *i=
Edi onTb , 1,...,L

th

Here UzJj is the mean received jammer power at the j~ sub-channel. The

Jammer divides his power among the L sub-channels according to:
i = (J1,J2, oooooo ,JL)

th

Where Jj is the jammer power allocated to the j~ sub-channel and:

L
2 J.=3

| =1

The jammer's propagation loss is defined by:

c (CI’CZ’ ..... ’CL)
where L,
1 Egj = 935Th
3 = chj

The mean received energy of the BFSK signal is defined as before by:

] = (ELE.. . F)

ey
T e R

A o )
CAR e e e e e s
[

" where we assume that
A .

12652 E . 3 B

In Appendix II we show that the probability of errbr of a
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BFSK noncoherent receiver over a Rayleigh fading AYGN channel, when a

tone jammer is present is:

. L N +F when the signal and jammer hi;
; . o opposite tones -
Py =
N . . .
) . when the signal and jammer hit
2N0+EC+EJ the same tone

(8.26)
; Assuming that the jammer and the signal hit the same tone with probabi-

fity 1/2 and opposite tones with probabif}ty 1/2

E ‘ o1 Mt 1 N

, b~ 2 2

i 2N°+EC+E 3 N +E +E 3

, s _ N°+EJ/2

# 2N +E +E

1 i No+cJ/2 ( )

3 8.27
i 2N°+Ec+cJ

(In the following we write Py instead of Pb)
From this point the derivation follows closely the one given in Chapter
7 for the noise jamming case.
Suppose that the jammer is very weak, so that even if the
jammer uses all its power to jam sub-channel 1, it would still have a
- lower probability of error than sub-channels 2,..,L. Clearly, in this

- case the CS operator chooses:

oy s oo ofcs 0 2 ok udd
. AA e A s A b e .

P = (1,0,0,...,0)

i.e. no hopping, only sub-channel 1 is used. R

Now let Jtl be defined by:




l N+CJ]/2 _ N

k , it exactly as bad as sub-channel 2 (unjammed). It is intuitively clear,

o "1t 0

3 | NG*Ey*eydyy 2N, +E,
Or: - 1

f t] Cl E - ’ !

4 - 2 _ . |
] Then, Jtl is the jammer power that when used to jam sub-channel 1,makes é
3 ;
' i

that for J > ‘]tl » the CS's operator should hop between sub-channel 1

and other sub-channels. We now give a formal definition of the problem:

|
|
{
|
Let .
* * * i
P = [P PR L) '
; and * * i
; ‘ Q = [J1,J2, ...... ,JL] i
3 ;
be the minimax solution, i.e., _Q maximizes Pb(g*,g) over all possible i
E J subject to: 1
f L .
2 9, =1 i
=1 |
{ where L
] -
| PP sd) = % P (IR
x J-l
t N +c /2
p (8.28)
2N +E A+ J,

0§ "§J

and g* is the probability vector which minimizes the maximum Pb(g,g)

E:> " that the jammer can achieve knowing P. Or:

7 -

2 : : R T L

; : I oemax PP L) s d

b : and: * -1 - (
P = min""max P, (P,J) -

P J T -




RS
—— et -

* *
We want to find P and J .

Using the Lagrange multiplier A for the constraint:

L -
: 2 P =1, :
§=1 -
; Let \
: N_+cC. J /2
FLRagiy) = S P() —2— +x( 2 A(3)
J=1 2N°+EJ+CJJJ

Then, the minimax point (gf,gf) mast satisfy the conditions ([3] ,
Appendix 3B.1 - KUHN TUCKER Conditions) :

*
Fi(P,d 12,)
aa_-}ﬁﬁ-—l- . = 0, all j such that P{j)>o
3 P(3)=P(4) .
L
2p(3) =
j=1
Also let:
N +c.J./2
Fo(Padiry) = > p(3) 21—+ 2 %
j=1 2N0+EJ+CJJJ j=1
Then, the minimax point should also satisfy the conditions:
*
Fo(P,d,1,)
?_j%{%;:_jl_ « =0, all j such that Pfj)>o
Jj—\]j
N I1
Jj =0 ' , a1l j such that P?j)=o
- L
- 2
§=1
From condition 1 we obtain: -




— e —— e e
#

*
N +c.J./2
0 JJ _ =0 ,all j such that P?j) >0

* 1
+E.4c J,
2N, EJ+cJJJ ' )

This implies that at the minimax solution the probability of'error ij

of all the active su{;channe]s must be equal. It also imp]ié; that the

number of active sub:

1

hannels depend on the jammer power J.

It was mentioned above that for'J > J,, ,more than a single
sub-channel is used, while for J g di1 only sub-channel 1 is used.
Similarly we define Jtn s N < L to be the highest jammer power for
which only n sub-channels are used for hopping. also let Jin be the

jammer power allocated to sub-channel i when J = Jtn' Hence:

n [
J, = !
tn i=1 tn
And by condition I :

N+c,al /2 N+c P /2 N
o "1°tn = <0 ntn = 0o

1 n

2No+E1+c1‘Jtn 2No+En+cn‘]tn 2N0+En+1 |

From which we obtain:

. 2N E.

. _of_v _ =

Jtn e (E 1) 3y i=1,2,...,N
n+1
and
N N OE n
—0 ¥ A T L . o acr
J. = n+l i=1 =i °i=1 ¢
tn

% N nfl

Therefore, knowing the jammer power, the number N of sub-chqpnels, the

CS should use for hopping, is to be found from: -
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o
—————— b

"
A e

Jpn-1 <9< gy
We have seen that the minimax solution corresponds to:

*
N +c.Jd./2
: 2 —% = A1 3 3=l 0N
- 2N0+Ej+chJ.
. *
. = 3 J>N
.JJ 0 ‘J
Hence: Jf i AIE{-NO(I-ZXI)
J -
2E.x1 2N
Summing over all j: N N
le E' 1
R v R R L
s B £ S =1 =j
Ny
J"'2"]0.2 c.
. )\ = _;_ N J=1NJ
o l
1
2 AN 2z o
j=1 =1 7
and: N .
J+ 2N D -
Ei ° i1 ¢4 2N -
CJ' N E - CJ‘ * J 1)
J; = 2 d
J=1 7}
0 s J>N

(8.29)

(8.30)




- e A v e

(2N°+Ej+c J)e./2 - (N +C. Jj/z)c

= Pl3) o +1, =0
*
(2N°+Ej+chj) Jj= ; -
J3=1,...,N
> Or: E ¢ /2 _ )
- ?(3) $ 2, =0 3 LN
(2N°+EJ+CJJJ)
Substituting J; from equation 8.30:
N oy )2
AR X .
P'(J)--Zl—ll" tat )
) N E.
J :E g
§=1 €
Summing over j: N ) 2
N IEW B\ N K
2P'(j)=1=-2x21 J=1 7j > 2
j=1 N E j=1 -J
2 L -
V =1 %
” -1
5 J+ 2No 53 %%' N E
A, = -4 2|1+ =1 J 15
. e N 1S
i 3=17j
Hence:

Ei
- cj 3 J=1,...,N

[
-
—b
[
e
fn
=
nlm
embe

0 3 3> N - (8.31)




Equation 8.31 and its parallel for the noise jamming case, equation

7.13 have exactly the same form.- Note however, that the set of con-

J
that in the multi-tone case the jammer too is subject to fading. In

stants c., j=1,...,L was differently defined, reflecting the fact

contrast, equation £.30 and 7.12 are not identical and theré?ore, result
in a different jammer power distribution.
We must still show that this procedure leads to the required

minimax point, i.e., that:

* _1 * *
J = max Pb(g J )
J -
and that
* R _1
. P = min max Pb(g,g)
P J

*
Let us show first that the extremum point of Pb(gf,g) at d=4J s

a maximum and that Pb(gf,g) exceeds any other value of Pb(gf,g).

*
aP, (P ,J) - E.c./2
b= =" _ $Y J J
3y Pi3) oN_+E ¢ J. )2
j (2N +Egresd;
AT N () “(Esc,)
Soo—Rm . pl3) LI <0 5 forall 0<
. +E .4 .J.
AP (2N +E cJJJ)
To show that *
P =min max P_(P,J)
- P J 0

recall that when J = gf , all the active sub-channels have the same
error probability whereas the non active sub-channels either exceed or

equal that level. Hence:

* * * -
PP sl ) € P,(P,d ) for every probability vector Pv
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Clearly:

Pp(Bad) ¢ max Py (R.0)

K - b
- ——— it A el oo s

Kl

I Pb(ﬂ '_‘1 ) max Pb(f_g_‘]_)

s J

N

< But, by definition: : .
v . * * *
: P.(P,0) = max P (P ,J)
b= = 3 b'\- =
Hence |
max P (P ,J) g max Py (P,d) for every ;
-\ J J |
probability vector P.
f s P = min! max Py (P,d) |
- P4 i
f* |
E The last result can be applied equally well to the coded ‘
E systems discussed above. The proof is very much the same as that given
- for noise jamming, and was therefore ommited. .
2 :
E
v _

]




CHAPTER IX :

CONCLUDING REMARKS

S Ty

-

3 , T The performance of FH/MFSK noncoherent CSs over an HF Rayleigh

# , fading channel, which is subject to jamming, has been studied. A general

¢t i e e A d arin it e A

error bound was used to evaluate and compare the performance of several
coded CSs under noise and multi-tone jamming. The same bound was used
also to optimize certain receiver parameters. The receivers studied are

basically conventional noncoherent FH/MFSK receivers, which for every

st s o aa o gt B r e

chip time-interval generate M matched filter output signals. The
receivers differ, though, in the type of processing these M signals

undergo and the metric used by the decoder.

For each receiver the "worst case jamming" was found in terms of

TR T A TR AGET TR ETT W o - T

( Pyc ° which is either the jammed fraction of the total spread spectrum

bandwidth, in case of partial-band jamming, or the duty cycle of a

e alt SR iRk
B "

pulsed jammer. The cutoff rate Ro was then derived for each receiver
under its worst case jamming condition. Puc depends,in general, on the

receiver being used. For a Hard Decision receiver, Puc is one, whether

7
AR e e e e - —— <

JSI is available or not. Soft Decision receivers may exhibit worst per-
formance at low values of p. It has been shown that the simple squared

matched filter output metric, which is optimal for broadband / contin-

Z uous jamming (and, of course, for non-jammed uniform channels) results
in a poor performance when p is small. Under this kind of jamming, the
? Hard Decision recefver is a better choice. A similar situation may arise

i'q when a Soft Decision receiver, having no CSI, hops over a nonuniform




Y @
B o
C e amAS

channel. A Soft Decision receiver using the squared matched filter
output metric performs better than the Hard Decision receiver, provided
that, JSI is available, or when p can be measured and the ME:metric
implemented. Both techniques may add considerably to the o{éra]l comp-

lexity of the CS. Another approach has been demonstrated by introducing

the Quantizer-Limiter and the Limiter receivers. These easy to imple-

ment receivers seem to outperform the Hard Decision receiver, provided
that a certain receiver parameter is tuned to its optimal value, which
depends on the noise spectral density and the mean signal power. It has
been shown, though, that the performance is relatively insensitive to

changes in the value of this parameter.

As well known [4,5) diversity,which in effect transmits each
code& bit over many frequency sub-bands, which fade independently, may
be extremely beneficial over fading channels. This is also the case
when combatting jammer is the issue. The full impact of optimal diver-
sity for the Soft Decision FH/MFSK receiver under noise jamming can be
seen when comparing figures 12 and 13a. Typically though, in prac-
tical situations there is a constraint imposed on the minimal chip
duration, 1imiting the maxima) order of diversity. In extreme cases
the minimal Tc is equall to Tb , i.e., for M=2 no diversity (or
coding) is possible. In such a situation high M systems have an
impressive advantage over binary systems. On the other hand, binary
systems may perform better than high M systems under multi-tone
jamming. Such jammers, however, require more jamming equipment and
more information about the target CS. A system in which M can be

field selected according to the kind of threat and variable -field con-




ditions seems very attractive.
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APPENDIX 1

: Derivation of the Symbol Error Probability of a Noﬁcoherent

T Orhogonal MFSK System Over a Rayleigh Fading AWGN Channel.

The situation is reﬁresented schematically by the following model

1 « e B
2

The input and output alphabets are X = YE{1,...,M}.Assuming that x=1

was sent, the probability of symbol error is :

P = Pr{y1 £ y; for some i#1/x=1}

th

Where Y is the output of the receiver's k= energy detector. Hence:

P=1- Pr{yi €Y for all i#1/x=1}
=1- d/-P(yi < a for all ifl/x=1)Py(a/x=1)du
3 1
: = _qyqM-1 _ ~
=1 - J/-II-P(yi > a/x=1)] Py(u/x-l)da
1
0

But, y; is a Rayleigh random variable having the probabi]ity'distri-

i i




bution [4]:

exp {- XE-}_ 3 i#1

Pygy/x=1) = 1 N

R

(¢}

: Where No is the one-sided spectral density of the received naise.

} Also 9

Py(y/x=1) =B exp] - —-*L—-: yo
1 No+E. No+E.

Where Ec is the mean received energy per symbol.

Hence, for i#l :
‘ 2
Pr {yi'> a/x=1} = exp 3- g—g
o
A ’ 2 )IM-1
! e [1- Ply; > a/x=1)1""1 = [l-exp - %}— ]
' o
M-1
> (M'-(l)(_l)kﬂexp; ke
k=1 °
! Therefore: -
M-1 2 2
P = (ME])(-I)“l[expL :“ } 2a exp{ s }da
k=1 4 (3 NO+Ec NO+Ec
M-1
- g (V)
1+k(1+E /N ) ]

1
1
{jz For M=2 this reduces to:

f;{ p=—t
; {

- 2 + EC/No

]
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APPENDIX 11

-

-—

Derivation of the Symbol Error Probability of a ﬁbncoherent '

.Orthogonal BFSK System over a Rayleigh Fading AWGN Channel Hit by a

Multi-Tone Jammer.

We assume that during each chip time-interval the jammer hits

either Wy OF Wy » when Wo

tions of the BFSK receiver.

and w, are the two designated tone posi-

Let the random variable j be defined as:

1 ; the jammer hits 0y

0

the jammer hits R

Then, assuming hypothesis Ho is true, r_._ and so (see figure 2 )

co
are independent zero mean Gaussian random variables having the common

varians :

N +E

0 c 3 J=1

2, _ 2 _
E{rco} = E{rso} = .
Ny * Ec + EJ ; j=o
Likewise, el and rg; are independent zero mean Gaussian random varia-

bles having the common varians:

No * EJ s j=1
2., _ 2 _
E{rcll = E{rsll =
' N, 3 J=0
Defining:
s [2 .2 E
2y = V' * Tso
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.

ke have:

N 2 p
; - P (2/1) = 2z exp {— Z } -
3 PR z /3 No+Ee No*E.

2
- A . p (Z/O) ___25___ exp { ___Z____}

F z /3 N+EHE, N, +E +E,

diiiae

2 2
E ) P (z/1) 2z exp {- z
' Zy/3 N +E

- N 2 -
: P (2/0) %E-exp {- ﬁ—-}
E Z]_,j o

Hence:

t

}‘ P(EY‘Y‘OY‘/HO,j=l) = p(zl > ZO/HO’j=1) u

/P(Zl P ZolHo,j=1,ZO=Z)PZO(Z/HO,J'=1)dz

| )

_[P(Zl > 2/H,3=1)P, (2)dz

0 o

n

But:

i
!
3 ' P(1,> 2) /P (z/H,,3=1)dz |
9 z !
e, z 1
1
i :
!

: 2
/ 2Z_ exp { z }dz
2 N°+EJ N +E

0 J

ook
T
e o

N >‘|
1
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J e PR

P(error H,) = P.(0) 9 __J 4+p.(1)
J J
2No+Ec+EJ

- Assuming now that LA and ™y are the apriori probabilities of Ho and H

- we obtain:

P = Plerror/H, ), + P(error/H )N

/P(ZI;ZOIH('),j=0,Z°=z)Pz£z/Ho,j=1)dz

$=1) =
P(error/H,j=1) Pj(l) + P(error/H ,J O)PJ-(O)

) 2
: P(error/Ho,j=1) = fexpz- -z
- B No*EJ
i No +.EJ
2N0+EC+EJ
Similarly,
P(error/H,,j=0) = P(Z; > Z /H,,3=0)
0
R T
2N°+EC+EJ
Hence:
P(error/Ho) =
- No + EJ
= Pj(l)-——————-—- i
2N0+EC+EJ
By symmetry:

N +E

N
+ P (0)—2—

3 2
}——2-2—— exp {-‘ z }dz
No*E, No+E.

2N°+EC+EJ

N
2N°+EC+EJ

1’




No + EJ No

=T, + 1,
2N0+EC+EJ 2N°+EC+EJ

3 Assuming also that II1 = IIZ = k. we obtain: :
. - - N, + Ey/2
s ' 4
2N°+EC+EJ |
i
i

& F
= 1 |
"(

%1 1
44
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